Uneingeschränkter Zugang

Heat Storage Combined with Biomass CHP under the National Support Policy. A Case Study of Estonia


Zitieren

[1] Galindo Fernandez M., Roger-Lacan C., Gahrs U., Aumaitre V. Efficient district heating and cooling systems in the EU Case studies analysis, replicable key success factors and potential policy implications. Publication Office of the European Union, 2016. https://doi.org/10.2760/371045Search in Google Scholar

[2] Mashatin V., Link S., Siirde A. The Impact of Alternative Heat Supply Options on CO2 Emission and District Heating System. Chemical Engineering Transactions 2014:39:1105–1110. https://doi.org/10.3303/CET1439185Search in Google Scholar

[3] Connolly D., Mathiesen B. V., Ostergaard P. A., Lund H., Werner S., Moller B., Persson U., Boermans T., Trier D., Nielsen S. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. https://doi.org/10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035Search in Google Scholar

[4] Latosov E., Volkova A., Siirde A., Thalfeldt M., Kurnitski J. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. https://doi.org/10.2478/rtuect-2019-000110.2478/rtuect-2019-0001Search in Google Scholar

[5] Vigants E., Prodanuks T., Vigants G., Veidenbergs I. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20:5–23. https://doi.org/10.1515/rtuect-2017-000710.1515/rtuect-2017-0007Search in Google Scholar

[6] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Primary energy factor for district heating networks in European Union member states. Energy Procedia 2017:116:69–77. https://doi.org/10.1016/j.egypro.2017.05.05610.1016/j.egypro.2017.05.056Search in Google Scholar

[7] Pakere I., Romagnoli F., Blumberga D. Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia 2018:149:549–554. https://doi.org/10.1016/j.egypro.2018.08.21910.1016/j.egypro.2018.08.219Search in Google Scholar

[8] Lund H., Werner S., Wiltshire S., Svendsen S., Thorsen J. E., Hvelplund F., Mathiesen B. V. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. https://doi.org/10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089Search in Google Scholar

[9] Ziemele J., Gravelsins A., Blumberga A., Vigants G., Blumberga D. System dynamics model analysis of pathway to 4th generation district heating in Latvia. Energy 2016:110:85–94. https://doi.org/10.1016/j.energy.2015.11.07310.1016/j.energy.2015.11.073Search in Google Scholar

[10] Lund H., Ostergaard P. A., Connolly D., Mathiesen B. V. Smart energy and smart energy systems. Energy 2017:137:556–565. https://doi.org/10.1016/j.energy.2017.05.12310.1016/j.energy.2017.05.123Search in Google Scholar

[11] Nuytten T., Claessens B., Paredis K., Van Bael J., Six D. Flexibility of a combined heat and power system with thermal energy storage for district heating. Applied Energy 2013:104:583–591. https://doi.org/10.1016/j.apenergy.2012.11.02910.1016/j.apenergy.2012.11.029Search in Google Scholar

[12] Meffre A., Xavier P., Olives R., Bessada C., Veron E., Echegut P. High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes. Waste and Biomass Valorization 2015:6(6):1003–1014. https://doi.org/10.1007/s12649-015-9409-910.1007/s12649-015-9409-9Search in Google Scholar

[13] Karner K., Mckenna R., Klobasa M., Kienberger T. Industrial excess heat recovery in industry-city networks: a technical, environmental and economic assessment of heat flexibility. Journal of Cleaner Production 2018:193:771–783. https://doi.org/10.1016/j.jclepro.2018.05.04510.1016/j.jclepro.2018.05.045Search in Google Scholar

[14] Bauer D., Marx R., Nußbicker-Lux J., Ochs F., Heidemann W., Muller-Steinhagen H. German central solar heating plants with seasonal heat storage. Solar Energy 2010:84(4):612–623. https://doi.org/10.1016/j.solener.2009.05.01310.1016/j.solener.2009.05.013Search in Google Scholar

[15] Ciampi G., Rosato A., Sibilio S. Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. Energy 2018:143:757–771. https://doi.org/10.1016/j.energy.2017.11.02910.1016/j.energy.2017.11.029Search in Google Scholar

[16] Soloha R., Pakere I., Blumberga D. Solar energy use in district heating systems. A case study in Latvia. Energy 2017:137:586–594. https://doi.org/10.1016/j.energy.2017.04.15110.1016/j.energy.2017.04.151Search in Google Scholar

[17] Verda V., Colella F. Primary energy savings through thermal storage in district heating networks. Energy 2011:36(7):4278–4286. https://doi.org/10.1016/j.energy.2011.04.01510.1016/j.energy.2011.04.015Search in Google Scholar

[18] Noussan M., Cerino-Abdin G., Poggio A., Roberto R. Biomass-fired CHP and heat storage system simulations in existing district heating systems. Applied Thermal Engineering 2014:71(2):729–735. https://doi.org/10.1016/j.applthermaleng.2013.11.02110.1016/j.applthermaleng.2013.11.021Search in Google Scholar

[19] Wang H., Yin W., Abdollahi E., Lahdelma R., Jiao W. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Applied Energy 2015:159:401–421. https://doi.org/10.1016/j.apenergy.2015.09.02010.1016/j.apenergy.2015.09.020Search in Google Scholar

[20] Streckiene G., Miseviciute V. Research of Operation Modes of Heat Storage Tank in CHP Plant Using Numerical Simulation. Environmental and Climate Technologies 2012:6:91–99. https://doi.org/10.2478/v10145-011-0013-310.2478/v10145-011-0013-3Search in Google Scholar

[21] Cabeza L. F., Martorell I., Miro L., Fernandez A. I., Barreneche C. Introduction to thermal energy storage (TES) systems. Advances in Thermal Energy Storage Systems 2015:1–28. https://doi.org/10.1533/9781782420965.110.1533/9781782420965.1Search in Google Scholar

[22] Gadd H., Werner S. Thermal energy storage systems for district heating and cooling. Advances in Thermal Energy Storage Systems 2015:467–478. https://doi.org/10.1533/9781782420965.4.46710.1533/9781782420965.4.467Search in Google Scholar

[23] Nordvarme. Korttidslagring av varmt vand i tanke over jorden (Short-term storage of hot water in tanks above ground), 1993. (in Swedish)Search in Google Scholar

[24] Smith A. D., Mago P. J., Fumo N. Benefits of thermal energy storage option combined with CHP system for different commercial building types. Sustainable Energy Technologies and Assessments 2013:1:3–12. https://doi.org/10.1016/j.seta.2012.11.00110.1016/j.seta.2012.11.001Search in Google Scholar

[25] Andrews D., Pardo-Garcia N., Krook-Riekkola A., Tzimas E., Serpa J., Carlsson J., Papaioannou I. Background Report on EU-27 District Heating and Cooling Potentials, Barriers, Best Practice and Measures of Promotion. JRC Scientific and Policy Report 2012. https://setis.ec.europa.eu/system/files/1.DHCpotentials.pdfSearch in Google Scholar

[26] Volkova A., Hlebnikov A., Siirde A. Simulation of the accumulator tank coupled with the power unit of power plant under the conditions of open electricity market. Chemical Engineering Transactions 2012:29:757–762. https://doi.org/10.3303/CET1229127Search in Google Scholar

[27] Pakere I., Purina D., Blumberga D., Bolonina A. Evaluation of Thermal Energy Storage Capacity by Heat Load Analyses. Energy Procedia 2016:95:377–384. https://doi.org/10.1016/j.egypro.2016.09.04010.1016/j.egypro.2016.09.040Search in Google Scholar

[28] Hast A., Rinne S., Syri S., Kiviluoma J. The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity. Energy 2017:137:775–788. https://doi.org/10.1016/j.energy.2017.05.11310.1016/j.energy.2017.05.113Search in Google Scholar

[29] Penttila K. E. Waste-to-Energy Plant as Part of Combined Heat and Power Strategy – Using the Example of the Klaipeda Case. Importance of circular economy is growing. TK Verlag Karl Thome-Kozmiensky, 2012.Search in Google Scholar

[30] CODE2. Case study factsheet Parnu, Estonia, Parnu CHP plant, 2014 [Online]. Available: http://www.code2-project.eu/wp-content/uploads/CODE2-BPC-ES-Parnu-CHP-v1.pdfSearch in Google Scholar

[31] Government of the Republic of Estonia. National Development Plan of the Energy Sector until 2030, 2017 [Online]. Available: https://www.mkm.ee/sites/default/files/ndpes_2030_eng.pdfSearch in Google Scholar

[32] Council of European Energy Regulators, Status Review of Renewable Support Schemes in Europe, 2017 [Online]. Available: https://www.ceer.eu/documents/104400/-/-/41df1bfe-d740-1835-9630-4e4cccaf8173Search in Google Scholar

[33] Ziemele J., Pakere I., Chernovska L., Blumberga D. Lowering Temperature Regime in District Heating Network for Existing Building Stock. Chemical Engineering Transactions 2016:52:709–714. doi:10.3303/CET1652119Search in Google Scholar

[34] Danish Energy Agency. Individual Heating Plants and Energy Transport Technology Data for Energy Plants, 2012.Search in Google Scholar

[35] Loo L., Maaten B., Konist A., Siirde A., Neshumayev D., Pihu T. Carbon dioxide emission factors for oxy-fuel CFBC and aqueous carbonation of the Ca-rich oil shale ash. Energy Procedia 2017:128:144–149. https://doi.org/10.1016/j.egypro.2017.09.03410.1016/j.egypro.2017.09.034Search in Google Scholar

[36] Konist A., Maaten B., Loo L., Neshumayev D., Pihu T. Mineral Sequestration of CO2 by Carboation of Ca-Rich Oil Shale Ash in Natural Conditions. Oil Shale 2016:33(3):248–259. https://doi.org/10.3176/oil.2016.3.0410.3176/oil.2016.3.04Search in Google Scholar

[37] Latosov E., Kurnitski J., Thalfeldt M., Volkova A. Primary Energy Factors for Different District Heating Networks: An Estonian Example. Energy Procedia 2016:96:674–684. https://doi.org/10.1016/j.egypro.2016.09.12610.1016/j.egypro.2016.09.126Search in Google Scholar

[38] Government of Republic of Estonia. Minimum requirements for energy performance RT I, 2015.Search in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere