Uneingeschränkter Zugang

Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
Special Issue of Environmental and Climate Technologies Part I: Energy, bioeconomy, climate changes and environment nexus

Zitieren

[1] Spalvins K., Ivanovs K., Blumberga D. Single cell protein production from waste biomass: review of various agricultural by-products. Agronomy Research 2018:16(S2):1493–1508. doi:10.15159/ar.18.129Search in Google Scholar

[2] Johnson D. T., Taconi K. A. The glycerin glut: options for value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress 2007:26(4):338–348. doi:10.1002/ep.1022510.1002/ep.10225Open DOISearch in Google Scholar

[3] Kost C., et al. Levelized cost of electricity renewable energy technologies. Study. Fraunhofer ISE, 2013.Search in Google Scholar

[4] Browne J., Nizami A. S., Thamsiriroj T., Murphy J. D. Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland. Renewable and Sustainable Energy Reviews 2011:15(9):4537–4547. doi:10.1016/j.rser.2011.07.09810.1016/j.rser.2011.07.098Open DOISearch in Google Scholar

[5] Werpy T., Petersen G. Top Value Added Chemicals from Biomass. Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas. United States Department of Energy, 2004.10.2172/15008859Search in Google Scholar

[6] FitzPatric. M., Champagne P., Cunningham M. F., Whitney R. A. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology 2010:101(23):8915–8922. doi:10.1016/j.biortech.2010.06.12510.1016/j.biortech.2010.06.12520667714Open DOISearch in Google Scholar

[7] Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia 2018:147:409–418. doi:10.1016/j.egypro.2018.07.11110.1016/j.egypro.2018.07.111Open DOISearch in Google Scholar

[8] El-Bakry M., et al. From Wastes to High Value Added Products: Novel Aspects of SSF in the Production of Enzymes. Journal Critical Reviews in Environmental Science and Technology 2015:45(18). doi:10.1080/10643389.2015.101042310.1080/10643389.2015.1010423Search in Google Scholar

[9] Pinzi S., Garcia I. L., J. Lopez-Gimenez F. J., DeCastro M. D. L., Dorado G., Dorado M. P. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy and Fuels 2009:23(5):2325–2341. doi:10.1021/ef801098a10.1021/ef801098aOpen DOISearch in Google Scholar

[10] Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL 2013:20(6):D602. doi:10.1051/ocl/201302910.1051/ocl/2013029Search in Google Scholar

[11] Finco A. M. O., Mamani L. D. G., Carvalho J. C., Pereira G. V. M., Soccol V. T., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2016:37(5):1–16. doi:10.1080/07388551.2016.121322110.1080/07388551.2016.121322127653190Open DOISearch in Google Scholar

[12] Huang C., Chen X., Xiong L., Chen X., Ma L., Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances 2013:31(2):129–139. doi:10.1016/j.biotechadv.2012.08.01010.1016/j.biotechadv.2012.08.01022960618Open DOISearch in Google Scholar

[13] Spalvins K., Blumberga D. Single cell oil production from waste biomass: review of applicable agricultural by-products. Agronomy Research 2019:17(3):833–849. doi:10.15159/ar.19.039Search in Google Scholar

[14] Zuta C. P., Simpson B. K., Chan H. M., Phillips L. Concentrating PUFA from mackerel processing waste. Journal of the American Oil Chemists Society 2003:80(9):933–936. doi:10.1007/s11746-003-0799-510.1007/s11746-003-0799-5Open DOISearch in Google Scholar

[15] Boyle N. R, Morgan J. A. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metabolic Engineering 2011:13(2):150–158. doi:10.1016/j.ymben.2011.01.00510.1016/j.ymben.2011.01.005Open DOISearch in Google Scholar

[16] Mekonnen M. M, Hoekstra A. Y. Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators 2014:46:214–223. doi:10.1016/j.ecolind.2014.06.01310.1016/j.ecolind.2014.06.013Open DOISearch in Google Scholar

[17] Spalvins K., Blumberga D. Production of fish feed and fish oil from waste biomass using microorganisms: overview of methods analyzing resource availability. Environmental and Climate Technologies 2018:22(1):149–154. doi:10.2478/rtuect-2018-001010.2478/rtuect-2018-0010Open DOISearch in Google Scholar

[18] Li Q., Du W., Liu D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 2008:80(5):749–756. doi:10.1007/s00253-008-1625-910.1007/s00253-008-1625-9Open DOISearch in Google Scholar

[19] Leiva-Candia D. E., Pinzi S., Redel-macías M. D., Koutinas A., Webb C., Dorado M. P. The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 2014:123:33–42. doi:10.1016/j.fuel.2014.01.05410.1016/j.fuel.2014.01.054Open DOISearch in Google Scholar

[20] Jin M., Slininger P. J., Dien B. S., Waghmode S., Moser B. R., Orjuela A., Sousa L. C., Balan V. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology 2015:33(1):43–54. doi:10.1016/j.tibtech.2014.11.00510.1016/j.tibtech.2014.11.005Open DOISearch in Google Scholar

[21] Patel A., Arora N., Sartaj K., Pruthi V., Pruthi P. A. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renewable and Sustainable Energy Reviews 2016:62:836–855. doi:10.1016/j.rser.2016.05.01410.1016/j.rser.2016.05.014Open DOISearch in Google Scholar

[22] Qin L., Liu L., Zeng A., Wei D. Bioresource Technology From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts. Bioresource Technology 2017:245:1507–1519. doi:10.1016/j.biortech.2017.05.16310.1016/j.biortech.2017.05.163Open DOISearch in Google Scholar

[23] Chanda S., Chakrabarti S. Plant origin liquid waste: A resource for single cell protein production by yeast. Bioresource Technology 1996:57(1):51–4. doi:10.1016/0960-8524(96)00053-310.1016/0960-8524(96)00053-3Open DOISearch in Google Scholar

[24] Deeba F., Pruthi V., Negi Y. S. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresource Technology 2015:213:96–102. doi:10.1016/j.biortech.2016.02.10510.1016/j.biortech.2016.02.10526965670Open DOISearch in Google Scholar

[25] Zhou W., Gong Z., Zhang L., Liu Y., Yan J., Zhao M. Feasibility of lipid production from waste paper by the oleaginous yeast Cryptococcus curvatus. BioResources 2017:12(3):5249–5263. doi:10.15376/biores.12.3.5249-526310.15376/biores.12.3.5249-5263Search in Google Scholar

[26] Annamalai N., Sivakumar N., Oleskowicz-Popiel P. Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus. Fuel 2018:217:420–426. doi:10.1016/j.fuel.2017.12.10810.1016/j.fuel.2017.12.108Open DOISearch in Google Scholar

[27] Angerbauer C., Siebenhofer M., Mittelbach M., Guebitz G. M. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology 2008:99(8):3051–3056. doi:10.1016/j.biortech.2007.06.04510.1016/j.biortech.2007.06.04517719773Search in Google Scholar

[28] Li J., Liu R., Chang G., Li X., Chang M., Liu Y., Jin Q., Wang X. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology 2015:177C:51–57. doi:10.1016/j.biortech.2014.11.04610.1016/j.biortech.2014.11.04625479393Open DOISearch in Google Scholar

[29] Patil K. P, Gogate P. R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. The Chemical Engineering Journal 2015:268:187–196. doi:10.1016/j.cej.2015.01.05010.1016/j.cej.2015.01.050Open DOISearch in Google Scholar

[30] Ethier S., Woisard K., Vaughan D., Wen Z. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technology 2010:102(1):88–93. doi:10.1016/j.biortech.2010.05.02110.1016/j.biortech.2010.05.02120570140Open DOISearch in Google Scholar

[31] Meesters P. A. E. P., Huijberts G. N. M., Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Applied Microbiology Biotechnology 1996:45(5):575–579. doi:10.1007/s00253005073110.1007/s002530050731Open DOISearch in Google Scholar

[32] Chang G., Gao N., Tian G., Wu Q., Chang M., Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technology 2013:142:400–406. doi:10.1016/j.biortech.2013.04.10710.1016/j.biortech.2013.04.10723747449Open DOISearch in Google Scholar

[33] Munch G., Sestric R., Sparling R., Levin D. B., Cicek N. Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol. Bioresource Technology 2015:185:49–55. doi:10.1016/j.biortech.2015.02.05110.1016/j.biortech.2015.02.05125747878Open DOISearch in Google Scholar

[34] Kitcha S., Cheirsilp B. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 2011:9:274–282. doi:10.1016/j.egypro.2011.09.02910.1016/j.egypro.2011.09.029Open DOISearch in Google Scholar

[35] Sestric R., Munch G., Cicek N., Sparling R., Levin D. B. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology 2014:164:41–46. doi:10.1016/j.biortech.2014.04.01610.1016/j.biortech.2014.04.016Open DOISearch in Google Scholar

[36] Papanikolaou S., Aggelis G. Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technology 2009:21(4):83–87. doi:10.1002/lite.20090001710.1002/lite.200900017Open DOISearch in Google Scholar

[37] Poli J. S., da Silva M. A. N., Siqueira E. P., Pasa V. M. D., Rosa C. A., Valente P. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Bioresource Technology 2014:161:320–326. doi:10.1016/j.biortech.2014.03.08310.1016/j.biortech.2014.03.083Open DOISearch in Google Scholar

[38] Papanikolaou S., Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single. Bioresource Technology 2002:82:43–49. doi:10.1016/S0960-8524(01)00149-310.1016/S0960-8524(01)00149-3Open DOISearch in Google Scholar

[39] Gouda M. K., Omar S. H., Aouad L. M. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World Journal of Microbiology and Biotechnology 2008:24(9):1703–1711. doi:10.1007/s11274-008-9664-z10.1007/s11274-008-9664-zOpen DOISearch in Google Scholar

[40] Peng W. F., Huang C., Chen X. F., Xiong L., Chen X., Chen Y., Ma L. Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis. Renewable Energy 2013:55:31–34. doi:10.1016/j.renene.2012.12.01710.1016/j.renene.2012.12.017Open DOISearch in Google Scholar

[41] Huang X., Shen Y., Luo H., Liu J., Liu J. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid. Bioresource Technology 2018:247:395–401. doi:10.1016/j.biortech.2017.09.09610.1016/j.biortech.2017.09.096Open DOISearch in Google Scholar

[42] Minowa T., Yokoyama S., Kishimoto M. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 1995:74(12):1735–1738. doi:10.1016/0016-2361(95)80001-X10.1016/0016-2361(95)80001-XOpen DOISearch in Google Scholar

[43] Liang Y., Sarkany N., Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009:31(7):1043–1049. doi:10.1007/s10529-009-9975-710.1007/s10529-009-9975-719322523Open DOISearch in Google Scholar

[44] Ochoa de Alda J. A. G. Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resources, Conservation and Recycling 2008:52(7):965–972. doi:10.1016/j.resconrec.2008.02.00510.1016/j.resconrec.2008.02.005Open DOISearch in Google Scholar

[45] Bajpai P. Recycling and Deinking of Recovered Paper. London and New York: Elsevier, 2014.Search in Google Scholar

[46] Kuokkanen T., Nurmesniemi H., Pöykiö R., Kujala K., Kaakinen J., Kuokkanen M. Chemical and leaching properties of paper mill sludge. Chemical Speciation and Bioavailability 2008:20(2):111–122. doi:10.3184/095422908X32448010.3184/095422908X324480Open DOISearch in Google Scholar

[47] Scott G. M., Abubakr S., Smith A. Sludge characteristics and disposal alternatives for the pulp and paper industry. Proceedings International Environmental Conference, Atlanta, GA, TAPPI PRESS, 1995.Search in Google Scholar

[48] Trevelyan W. E., Forrest R. S., Harrison J. S. Determination of yeast carbohydrates with the anthrone reagent. Nature 1952:170:626–627. doi:10.1038/170626a010.1038/170626a013002392Open DOISearch in Google Scholar

[49] Ivarson K. C., Morita H. Single-cell protein by acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper. Applied and Environmental Microbiology 1982:43(3):643–647.10.1128/aem.43.3.643-647.198224188816345970Search in Google Scholar

[50] Vishniac H. S., Hempfling W. P. Cryptooccus vishniacii sp. nov., an Antarctic Yeast. International Journal of Systematic Bacteriology 1979:29(2):153–158. doi:10.1099/00207713-29-2-15310.1099/00207713-29-2-153Open DOISearch in Google Scholar

[51] Fytili D., Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods – A review. Renewable and Sustainable Energy Reviews 2008:12(1):116–140. doi:10.1016/j.rser.2006.05.01410.1016/j.rser.2006.05.014Open DOISearch in Google Scholar

[52] Commission of European Communities. Council Directive 91/271/EEC of 21 March 1991 concerning urban waste-water treatment (amended by the 98/15/EC of 27 February 1998).Search in Google Scholar

[53] Davis R. D. The impact of EU and UK environmental pressures on the future of sludge treatment and disposal. Water and Environmental Journal 1996:10(1):65–69. doi:10.1111/j.1747-6593.1996.tb00010.x10.1111/j.1747-6593.1996.tb00010.xOpen DOISearch in Google Scholar

[54] Eurostat. EU population up to nearly 513 million on 1 January 2018, 2018.Search in Google Scholar

[55] Kargbo D. M. Biodiesel production from municipal sewage sludges. Energy and Fuels 2010:24(5):2791–2794. doi:10.1021/ef100110610.1021/ef1001106Open DOISearch in Google Scholar

[56] Sommers L. E., Nelson D. W., Yost K. J. Variable Nature of Chemical Composition of Sewage Sludges. Journal of Environmental Quality 2010:5(3):303–306. doi:10.2134/jeq1976.00472425000500030017x10.2134/jeq1976.00472425000500030017xOpen DOISearch in Google Scholar

[57] Sommers L. E. Chemical Composition of Sewage Sludges and Analysis of Their Potential Use as Fertilizers. Journal of Environmental Quality 2010:6(2):225–232. doi:10.2134/jeq1977.00472425000600020026x10.2134/jeq1977.00472425000600020026xOpen DOISearch in Google Scholar

[58] European Biodiesel Board. Statistics. the EU biodiesel industry [Online]. [Accessed 17.07.2018] Available: http://www.ebb-eu.org/stats.php#Search in Google Scholar

[59] Renewables. Global status report. REN21. 2015 [Online]. [Accessed 09.05.2018]. Available at: http://www.ren21.net/wp-content/uploads/2015/07/REN12-GSR2015_Onlinebook_low1.pdfSearch in Google Scholar

[60] United States Department of Energy (USDE). Biodiesel – Just the Basics. Final. [Online]. [Accessed 17.07.2018]. Available: https://www1.eere.energy.gov/vehiclesandfuels/pdfs/basics/jtb_biodiesel.pdfSearch in Google Scholar

[61] Ciriminna R., Della Pina C., Rossi M., Pagliaro M. Understanding the glycerol market. European Journal of Lipid Science and Technology 2014:116(10):1432–1439. doi:10.1002/ejlt.20140022910.1002/ejlt.201400229Search in Google Scholar

[62] Dobrowolski A., Mituła P., Rymowicz W., Mirończuk A. M. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresource Technology 2016:207:237–243. doi:10.1016/j.biortech.2016.02.03910.1016/j.biortech.2016.02.039Open DOISearch in Google Scholar

[63] Kong P. S., Aroua M. K., Ashri Wan Daud W. M. Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews 2016:63:533–555. doi:10.1016/j.rser.2016.05.05410.1016/j.rser.2016.05.054Open DOISearch in Google Scholar

[64] Werz P. D. L., Kainz J., Rieger B. Thermo- and pH-Responsive Nanogel Particles Bearing Secondary Amine Functionalities for Reversible Carbon Dioxide Capture and Release. Macromolecules 2015:48(18):6433–6439. doi:10.1021/acs.macromol.5b0136710.1021/acs.macromol.5b01367Open DOISearch in Google Scholar

[65] Boot-Handford M. E., et al. Carbon capture and storage update. Energy and Environtal Science 2014:7(130):130–189. https://doi.org/10.1039/C3EE42350F10.1039/C3EE42350Open DOISearch in Google Scholar

[66] Simkin A. J., McAusland L., Headland L. R., Lawson T., Raines C. A. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. Journal of Experimental Botany 2015:66(13):4075–4090. doi:10.1093/jxb/erv20410.1093/jxb/erv204Open DOISearch in Google Scholar

[67] Spalvins K., Ivanovs K., Blumberga D. Single cell protein production from waste biomass : comparison of various agricultural by-products. Agronomy research 2017:16(2):1493–1508. doi:10.15159/ar.18.129Search in Google Scholar

[68] Yun Y., Yang J., Lee S. B., Park J. M., Lee C. Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients. Journal of Chemical technology and Biotechnology 2002:69(4):451–455. doi:10.1002/(SICI)1097-4660(199708)69:43.3.CO;2-D10.1002/(SICI)1097-4660(199708)69:43.3.CO;2-Open DOISearch in Google Scholar

[69] Park J. B. K., Craggs R. J. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Science and Technology 2010:5:633–640. doi:10.2166/wst.2010.95110.2166/wst.2010.951Open DOISearch in Google Scholar

[70] Worrell E., Bernstein L., Roy J., Price L., Harnisch J. Industrial energy efficiency and climate change mitigation. Energy Efficience 2009:2(2):109–123. doi:10.1007/s12053-008-9032-810.1007/s12053-008-9032-8Open DOISearch in Google Scholar

[71] Egenhofer C., et al. Final report for a study on composition and drivers of energy prices and costs in energy intensive industries: the case of the chemical industry – ammonia. Sensemaking Symp. 2014:1–33.Search in Google Scholar

[72] Guidelines for National Greenhouse Gas Inventories: Industrial Processes and Product Use 2006. IPCC, 2006:3.Search in Google Scholar

[73] Saad H. Ammar. Cultivation of Microalgae Chlorella vulgaris in airlift photobioreactor for Biomass Production using commercial NPK nutrients. Al-Khwarizmi Eng. J. 2016:12(1):90–99.Search in Google Scholar

[74] Roleda M. Y., Slocombe S. P., Leakey R. J. G., Day J. G., Bell E. M., Stanley M. S. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology 2013:129:439–449. doi:10.1016/j.biortech.2012.11.04310.1016/j.biortech.2012.11.043Open DOISearch in Google Scholar

[75] Li Y., Horsman M., Wang B., Wu N., Lan C. Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology 2008:81(4):629–636. doi:10.1007/s00253-008-1681-110.1007/s00253-008-1681-118795284Open DOISearch in Google Scholar

[76] Blair M. F., Kokabian B., Gude V. G. Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environtal Chemical Engineering 2014:2(1):665–674. doi:10.1016/j.jece.2013.11.00510.1016/j.jece.2013.11.005Open DOISearch in Google Scholar

[77] Pirt S. J., Lee Y.-K., Richmond A., Pirt M. W. The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilisation Journal of Chemical Technology and Biotechnology 1980:30(1):25–34. doi:10.1002/jctb.50330010510.1002/jctb.503300105Open DOISearch in Google Scholar

[78] Javanmardian M. Continuous Photoautotrophic Cultures of the Eukaryotic Alga. System 1992:39:487–497. doi:10.1002/bit.26039050310.1002/bit.26039050318600974Open DOISearch in Google Scholar

[79] Vijayakumar J., Anderson G. A., Gent S. P., Rajendran A. Calculation of biomass capacity of Algae based on their elemental composition, 2013.Search in Google Scholar

[80] Hammouda O., Gaber A., Abdel-Raouf N. Microalgae and waste-water treatment. Ecotoxicology and Environmental Safety 1994:31(3):205–210. doi:10.1006/eesa.1995.106410.1006/eesa.1995.10647498057Open DOISearch in Google Scholar

[81] de la Noüe J., Laliberté G., Proulx D. Algae and waste water. Journal of Applied Phycology 1992:4(3):247–254. doi:10.1007/BF0216121010.1007/BF02161210Open DOISearch in Google Scholar

[82] Liang Y., Sarkany N., Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 2009:31(7):1043–1049. doi:10.1007/s10529-009-9975-710.1007/s10529-009-9975-719322523Open DOISearch in Google Scholar

[83] Moraine R., Shelef G., Meydan A., Levi A. Algal single cell protein from wastewater treatment and renovation process. Biotechnology and Bioengineering 1979:21(7):1191–1207. doi:10.1002/bit.26021070910.1002/bit.260210709Open DOISearch in Google Scholar

[84] Guaya D., Hermassi M., Valderrama C., Farran A., Cortina J. L. Recovery of ammonium and phosphate from treated urban wastewater by using potassium clinoptilolite impregnated hydrated metal oxides as N-P-K fertilizer. Journal of Environmental Chemical Engineering 2016:4(3):3519–3526. doi:10.1016/j.jece.2016.07.03110.1016/j.jece.2016.07.031Open DOISearch in Google Scholar

[85] Collet P., Hélias Arnaud A., Lardon L., Ras M., Goy R. A., Steyer J. P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology 2011:102(1):207–214. doi:10.1016/j.biortech.2010.06.15410.1016/j.biortech.2010.06.15420674343Open DOISearch in Google Scholar

[86] Yakushev A., Newton E.V. Redox Interfaces In Marine Waters. Chemical Structure of Pelagic Redox Interfaces. Handbook of Environmetnal Chemistry 2013:22:1–12. doi:10.1007/698_2012_16710.1007/698_2012_167Open DOISearch in Google Scholar

[87] Jorquera O., Kiperstok A., Sales E. A., Embiruçu M., Ghirardi M. L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology 2010:101(4):1406–1413. doi:10.1016/j.biortech.2009.09.03810.1016/j.biortech.2009.09.038Open DOISearch in Google Scholar

[88] Rajeshwari K. V., Balakrishnan M., Kansal A., Lata K., Kishore V. V. N. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renewable and Sustainable Energy Reviews 2000:4(2):135–156. doi:10.1016/S1364-0321(99)00014-310.1016/S1364-0321(99)00014-3Open DOISearch in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere