Uneingeschränkter Zugang

Immunometabolic profiling of human monocytes in response to lipid exposure

, , , ,  und   
06. Aug. 2025

Zitieren
COVER HERUNTERLADEN

Roche HM, Gibney MJ. The impact of postprandial lipemia in accelerating atherothrombosis. J Cardiovasc Risk. 2000 Oct;7(5):317-24. DOI: 10.1177/204748730000700504 Search in Google Scholar

Ansar S, Koska J, Reaven PD. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011 Jul 7;10:61. DOI: 10.1186/1475-2840-10-61 Search in Google Scholar

Desmarchelier C, Borel P, Lairon D, Maraninchi M, Valéro R. Effect of Nutrient and Micronutrient Intake on Chylomicron Production and Postprandial Lipemia. Nutrients. 2019;11(6):1299. DOI: 10.3390/nu11061299 Search in Google Scholar

Teeman CS, Kurti SP, Cull BJ, Emerson SR, Haub MD, Rosenkranz SK. Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise. Nutr Metab (Lond). 2016 Nov 16;13:80. DOI: 10.1186/s12986-016-0142-6 Search in Google Scholar

Zhao Y, Liu L, Yang S, Liu G, Pan L, Gu C, et al. Mechanisms of Atherosclerosis Induced by Postprandial Lipemia. Front Cardiovasc Med. 2021 Apr 29;8:636947. DOI: 10.3389/fcvm.2021.636947 Search in Google Scholar

Khan IM, Pokharel Y, Dadu RT, Lewis DE, Hoogeveen RC, Wu H, et al. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome. J Clin Endocrinol Metab. 2016 Nov;101(11):4195-4204. DOI: 10.1210/jc.2016-2732 Search in Google Scholar

den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser TR, Rutledge JC. Fatty acids from very low-density lipoprotein lipolysis products induce lipid droplet accumulation in human monocytes. J Immunol. 2010 Apr 1;184(7):3927-36. DOI: 10.4049/jimmunol.0903475 Search in Google Scholar

Tsai WC, Li YH, Lin CC, Chao TH, Chen JH. Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci (Lond). 2004 Mar;106(3):315-9. DOI: 10.1042/CS20030227 Search in Google Scholar

Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front Cardiovasc Med. 2021;8:707529. DOI: 10.3389/fcvm.2021.707529 Search in Google Scholar

Sieg SF, Bazdar DA, Zidar D, Freeman M, Lederman MM, Funderburg NT. Highly oxidized low-density lipoprotein mediates activation of monocytes but does not confer interleukin-1β secretion nor interleukin-15 transpresentation function. Immunology. 2020 Feb;159(2):221-230. DOI: 10.1111/imm.13142 Search in Google Scholar

Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014 Aug;34(8):1731-8. DOI: 10.1161/ATVBAHA.114.303887 Search in Google Scholar

Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, et al. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol. 2019 Aug 30;10:2035. DOI: 10.3389/fimmu.2019.02035 Search in Google Scholar

Eslami O, Shahraki M, Shahraki T. Obesity Indices in relation to Lipid Abnormalities among Medical University Students in Zahedan, South-East of Iran. Int J Prev Med. 2019;10(1):15. DOI: 10.4103/ijpvm.IJPVM_177_17 Search in Google Scholar

Plessis CD, Saric N, Plessis BD, Zaciragic A. Assessment of correlation between lipid ratios and body mass index in patients with type 2 diabetes mellitus in Sarajevo, Bosnia and Herzegovina. Endocr Regul. 2024 Oct 1;58(1):187-194. DOI: 10.2478/enr-2024-0022 Search in Google Scholar

Huang W, Feng R, Xu X, Ma M, Chen J, Wang J, et al. Loss of Anthropometry-Lipids Relationship in Obese Adults: A Cross-Sectional Study in Southern China. Clin Epidemiol. 2023 Feb 17;15:191-201. DOI: 10.2147/CLEP.S400150 Search in Google Scholar

Hertelyova Z, Salaj R, Chmelarova A, Dombrovsky P, Dvorakova MC, Kruzliak P. The association between lipid parameters and obesity in university students. J Endocrinol Invest. 2016 Jul;39(7):769-78. DOI: 10.1007/s40618-015-0240-8 Search in Google Scholar

Kosovski IB, Bacârea V, Ghiga D, Ciurea CN, Cucoranu DC, Hutanu A, et al. Exploring the Link between Inflammatory Biomarkers and Adipometrics in Healthy Young Adults Aged 20-35 Years. Nutrients. 2024 Jan 15;16(2):257. DOI: 10.3390/nu16020257 Search in Google Scholar

Xu C, Yang X, Zu S, Han S, Zhang Z, Zhu G. Association between serum lipids, blood pressure, and simple anthropometric measures in an adult Chinese population. Arch Med Res. 2008 Aug;39(6):610-7. DOI: 10.1016/j.arcmed.2008.05.001 Search in Google Scholar

Kammar-García A, Elena Hernández-Hernández M, López-Moreno P, María Ortíz-Bueno A, de Lurdez Martínez-Montano M. Relation of body composition indexes to cardiovascular disease risk factors in young adults. Medicina de Familia (Semergen). 2019 Apr;45(3):147-155. DOI: 10.1016/j.semerg.2018.07.004 Search in Google Scholar

Humaera Z, Sukandar H, Rachmayati S, Sofiatin Y, Roesli RMA. 64 Body Mass Index correlates with Lipid Profile in Jatinangor Population. Journal of Hypertension. 2017;35:pe10. DOI: 10.1097/01.hjh.0000527435.35801.c2 Search in Google Scholar

Kosovski IB, Ciurea CN, Ghiga D, Ciurea NA, Huțanu A, Gliga FI, et al. Characterizing Human Peripheral Blood Lymphocyte Phenotypes and Their Correlations with Body Composition in Normal-Weight, Overweight, and Obese Healthy Young Adults. Medicina (Kaunas). 2024 Sep 18;60(9):1523. DOI: 10.3390/medicina60091523 Search in Google Scholar

Friedrich K, Sommer M, Strobel S, Thrum S, Blüher M, Wagner U, et al. Perturbation of the Monocyte Compartment in Human Obesity. Front Immunol. 2019 Aug 8;10:1874. DOI: 10.3389/fimmu.2019.01874 Search in Google Scholar

Devêvre EF, Renovato-Martins M, Clément K, Sautès-Fridman C, Cremer I, Poitou C. Profiling of the three circulating monocyte subpopulations in human obesity. J Immunol. 2015 Apr 15;194(8):3917-23. DOI: 10.4049/jimmunol.1402655 Search in Google Scholar

Rogacev KS, Ulrich C, Blömer L, Hornof F, Oster K, Ziegelin M, et al. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J. 2010 Feb;31(3):369-76. DOI: 10.1093/eurheartj/ehp308 Search in Google Scholar

Poitou C, Dalmas E, Renovato M, Benhamo V, Hajduch F, Abdennour M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2322-30. DOI: 10.1161/ATVBAHA.111.230979 Search in Google Scholar

Radushev V, Karkossa I, Berg J, von Bergen M, Engelmann B, Rolle-Kampczyk U, et al. Dysregulated cytokine and oxidative response in hyper-glycolytic monocytes in obesity. Front Immunol. 2024 Jul 10;15:1416543. DOI: 10.3389/fimmu.2024.1416543 Search in Google Scholar

van der Valk ES, Mulder DS, Kouwenhoven T, Nagtzaam NMA, van Rossum EFC, Dik WA, et al. Monocyte adaptations in patients with obesity during a 1.5 year lifestyle intervention. Front Immunol. 2022 Nov 17;13:1022361. DOI: 10.3389/fimmu.2022.1022361 Search in Google Scholar

Ding J, Reynolds LM, Zeller T, Müller C, Lohman K, Nicklas BJ, et al. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease. Diabetes. 2015 Oct;64(10):3464-74. DOI: 10.2337/db14-1314 Search in Google Scholar

Chen Y, Zhang J, Cui W, Silverstein RL. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J Exp Med. 2022 Jun 6;219(6):e20211314. DOI: 10.1084/jem.20211314 Search in Google Scholar

Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun. 2018 Dec 19;9(1):5379. DOI: 10.1038/s41467-018-07387-4 Search in Google Scholar

Cormican S, Griffin MD. Human Monocyte Subset Distinctions and Function: Insights From Gene Expression Analysis. Front Immunol. 2020 Jun 4;11:1070. DOI: 10.3389/fimmu.2020.01070 Search in Google Scholar

Jackson WD, Weinrich TW, Woollard KJ. Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets. Sci Rep. 2016 Jan 29;6:20038. DOI: 10.1038/srep20038 Search in Google Scholar

Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007 Mar;81(3):584-92. DOI: 10.1189/jlb.0806510 Search in Google Scholar

Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, et al. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int J Mol Sci. 2023 May 15;24(10):8757. DOI: 10.3390/ijms24108757 Search in Google Scholar

Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, Bickel C, et al. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost. 2004 Aug;92(2):419-24. DOI: 10.1160/TH04-02-0095 Search in Google Scholar

Wildgruber M, Czubba M, Aschenbrenner T, Wendorff H, Hapfelmeier A, Glinzer A, et al. Increased intermediate CD14++CD16++ monocyte subset levels associate with restenosis after peripheral percutaneous transluminal angioplasty. Atherosclerosis. 2016 Oct;253:128-134. DOI: 10.1016/j.atherosclerosis.2016.09.002 Search in Google Scholar

Yamamoto H, Yoshida N, Shinke T, Otake H, Kuroda M, Sakaguchi K, et al. Impact of CD14++CD16+ monocytes on coronary plaque vulnerability assessed by optical coherence tomography in coronary artery disease patients. Atherosclerosis. 2018 Feb;269:245-251. DOI: 10.1016/j.atherosclerosis.2018.01.010 Search in Google Scholar

Dregoesc MI, Țigu AB, Bekkering S, van der Heijden CDCC, Rodwell L, Bolboacă SD, et al. Intermediate monocytes are associated with the first major adverse cardiovascular event in patients with stable coronary artery disease. Int J Cardiol. 2024 Apr 1;400:131780. DOI: 10.1016/j.ijcard.2024.131780 Search in Google Scholar

Marcovecchio PM, Thomas GD, Mikulski Z, Ehinger E, Mueller KAL, Blatchley A, et al. Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2043-2052. DOI: 10.1161/ATVBAHA.117.309123 Search in Google Scholar

Mănescu IB, Mănescu M, Preda EC, Manu DR, Dobreanu M. The effect of postprandial in vivo and experimental in vitro hyperlipidemia on human peripheral blood monocytes. Acta Marisiensis Seria Medica. 2022 Dec;68(4):172-178. DOI: 10.2478/amma-2022-0026 Search in Google Scholar

Dobreanu M, Oprea OR. Laboratory medicine in the era of precision medicine - dream or reality? Romanian Journal of Laboratory Medicine. 2019 Apr;27(2):115-124. DOI: 10.2478/rrlm-2019-0025 Search in Google Scholar

Mănescu IB, Pál K, Lupu S, Dobreanu M. Conventional Biomarkers for Predicting Clinical Outcomes in Patients with Heart Disease. Life (Basel). 2022 Dec 15;12(12):2112. DOI: 10.3390/life12122112 Search in Google Scholar

Pál K, Mănescu IB, Lupu S, Dobreanu M. Emerging Biomarkers for Predicting Clinical Outcomes in Patients with Heart Disease. Life (Basel). 2023 Jan 13;13(1):230. DOI: 10.3390/life13010230 Search in Google Scholar

Xu L, Dai Perrard X, Perrard JL, Yang D, Xiao X, Teng BB, et al. Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1787-97. DOI: 10.1161/ATVBAHA.115.305609 Search in Google Scholar

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al; CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017 Sep 21;377(12):1119-1131. DOI: 10.1056/NEJMoa1707914 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie, Humanbiologie, Mikrobiologie und Virologie