Clinical Laboratory, Emergency County Clinical Hospital of Targu MuresRomania
Immunology Laboratory, Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu MuresRomania
Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu MuresRomania
Clinical Laboratory, Emergency County Clinical Hospital of Targu MuresRomania
Immunology Laboratory, Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu MuresRomania
This work is licensed under the Creative Commons Attribution 4.0 International License.
Roche HM, Gibney MJ. The impact of postprandial lipemia in accelerating atherothrombosis. J Cardiovasc Risk. 2000 Oct;7(5):317-24. DOI: 10.1177/204748730000700504Search in Google Scholar
Ansar S, Koska J, Reaven PD. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011 Jul 7;10:61. DOI: 10.1186/1475-2840-10-61Search in Google Scholar
Desmarchelier C, Borel P, Lairon D, Maraninchi M, Valéro R. Effect of Nutrient and Micronutrient Intake on Chylomicron Production and Postprandial Lipemia. Nutrients. 2019;11(6):1299. DOI: 10.3390/nu11061299Search in Google Scholar
Teeman CS, Kurti SP, Cull BJ, Emerson SR, Haub MD, Rosenkranz SK. Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise. Nutr Metab (Lond). 2016 Nov 16;13:80. DOI: 10.1186/s12986-016-0142-6Search in Google Scholar
Zhao Y, Liu L, Yang S, Liu G, Pan L, Gu C, et al. Mechanisms of Atherosclerosis Induced by Postprandial Lipemia. Front Cardiovasc Med. 2021 Apr 29;8:636947. DOI: 10.3389/fcvm.2021.636947Search in Google Scholar
Khan IM, Pokharel Y, Dadu RT, Lewis DE, Hoogeveen RC, Wu H, et al. Postprandial Monocyte Activation in Individuals With Metabolic Syndrome. J Clin Endocrinol Metab. 2016 Nov;101(11):4195-4204. DOI: 10.1210/jc.2016-2732Search in Google Scholar
den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser TR, Rutledge JC. Fatty acids from very low-density lipoprotein lipolysis products induce lipid droplet accumulation in human monocytes. J Immunol. 2010 Apr 1;184(7):3927-36. DOI: 10.4049/jimmunol.0903475Search in Google Scholar
Tsai WC, Li YH, Lin CC, Chao TH, Chen JH. Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci (Lond). 2004 Mar;106(3):315-9. DOI: 10.1042/CS20030227Search in Google Scholar
Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front Cardiovasc Med. 2021;8:707529. DOI: 10.3389/fcvm.2021.707529Search in Google Scholar
Sieg SF, Bazdar DA, Zidar D, Freeman M, Lederman MM, Funderburg NT. Highly oxidized low-density lipoprotein mediates activation of monocytes but does not confer interleukin-1β secretion nor interleukin-15 transpresentation function. Immunology. 2020 Feb;159(2):221-230. DOI: 10.1111/imm.13142Search in Google Scholar
Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014 Aug;34(8):1731-8. DOI: 10.1161/ATVBAHA.114.303887Search in Google Scholar
Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, et al. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol. 2019 Aug 30;10:2035. DOI: 10.3389/fimmu.2019.02035Search in Google Scholar
Eslami O, Shahraki M, Shahraki T. Obesity Indices in relation to Lipid Abnormalities among Medical University Students in Zahedan, South-East of Iran. Int J Prev Med. 2019;10(1):15. DOI: 10.4103/ijpvm.IJPVM_177_17Search in Google Scholar
Plessis CD, Saric N, Plessis BD, Zaciragic A. Assessment of correlation between lipid ratios and body mass index in patients with type 2 diabetes mellitus in Sarajevo, Bosnia and Herzegovina. Endocr Regul. 2024 Oct 1;58(1):187-194. DOI: 10.2478/enr-2024-0022Search in Google Scholar
Huang W, Feng R, Xu X, Ma M, Chen J, Wang J, et al. Loss of Anthropometry-Lipids Relationship in Obese Adults: A Cross-Sectional Study in Southern China. Clin Epidemiol. 2023 Feb 17;15:191-201. DOI: 10.2147/CLEP.S400150Search in Google Scholar
Hertelyova Z, Salaj R, Chmelarova A, Dombrovsky P, Dvorakova MC, Kruzliak P. The association between lipid parameters and obesity in university students. J Endocrinol Invest. 2016 Jul;39(7):769-78. DOI: 10.1007/s40618-015-0240-8Search in Google Scholar
Kosovski IB, Bacârea V, Ghiga D, Ciurea CN, Cucoranu DC, Hutanu A, et al. Exploring the Link between Inflammatory Biomarkers and Adipometrics in Healthy Young Adults Aged 20-35 Years. Nutrients. 2024 Jan 15;16(2):257. DOI: 10.3390/nu16020257Search in Google Scholar
Xu C, Yang X, Zu S, Han S, Zhang Z, Zhu G. Association between serum lipids, blood pressure, and simple anthropometric measures in an adult Chinese population. Arch Med Res. 2008 Aug;39(6):610-7. DOI: 10.1016/j.arcmed.2008.05.001Search in Google Scholar
Kammar-García A, Elena Hernández-Hernández M, López-Moreno P, María Ortíz-Bueno A, de Lurdez Martínez-Montano M. Relation of body composition indexes to cardiovascular disease risk factors in young adults. Medicina de Familia (Semergen). 2019 Apr;45(3):147-155. DOI: 10.1016/j.semerg.2018.07.004Search in Google Scholar
Humaera Z, Sukandar H, Rachmayati S, Sofiatin Y, Roesli RMA. 64 Body Mass Index correlates with Lipid Profile in Jatinangor Population. Journal of Hypertension. 2017;35:pe10. DOI: 10.1097/01.hjh.0000527435.35801.c2Search in Google Scholar
Kosovski IB, Ciurea CN, Ghiga D, Ciurea NA, Huțanu A, Gliga FI, et al. Characterizing Human Peripheral Blood Lymphocyte Phenotypes and Their Correlations with Body Composition in Normal-Weight, Overweight, and Obese Healthy Young Adults. Medicina (Kaunas). 2024 Sep 18;60(9):1523. DOI: 10.3390/medicina60091523Search in Google Scholar
Friedrich K, Sommer M, Strobel S, Thrum S, Blüher M, Wagner U, et al. Perturbation of the Monocyte Compartment in Human Obesity. Front Immunol. 2019 Aug 8;10:1874. DOI: 10.3389/fimmu.2019.01874Search in Google Scholar
Devêvre EF, Renovato-Martins M, Clément K, Sautès-Fridman C, Cremer I, Poitou C. Profiling of the three circulating monocyte subpopulations in human obesity. J Immunol. 2015 Apr 15;194(8):3917-23. DOI: 10.4049/jimmunol.1402655Search in Google Scholar
Rogacev KS, Ulrich C, Blömer L, Hornof F, Oster K, Ziegelin M, et al. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J. 2010 Feb;31(3):369-76. DOI: 10.1093/eurheartj/ehp308Search in Google Scholar
Poitou C, Dalmas E, Renovato M, Benhamo V, Hajduch F, Abdennour M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2322-30. DOI: 10.1161/ATVBAHA.111.230979Search in Google Scholar
Radushev V, Karkossa I, Berg J, von Bergen M, Engelmann B, Rolle-Kampczyk U, et al. Dysregulated cytokine and oxidative response in hyper-glycolytic monocytes in obesity. Front Immunol. 2024 Jul 10;15:1416543. DOI: 10.3389/fimmu.2024.1416543Search in Google Scholar
van der Valk ES, Mulder DS, Kouwenhoven T, Nagtzaam NMA, van Rossum EFC, Dik WA, et al. Monocyte adaptations in patients with obesity during a 1.5 year lifestyle intervention. Front Immunol. 2022 Nov 17;13:1022361. DOI: 10.3389/fimmu.2022.1022361Search in Google Scholar
Ding J, Reynolds LM, Zeller T, Müller C, Lohman K, Nicklas BJ, et al. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease. Diabetes. 2015 Oct;64(10):3464-74. DOI: 10.2337/db14-1314Search in Google Scholar
Chen Y, Zhang J, Cui W, Silverstein RL. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J Exp Med. 2022 Jun 6;219(6):e20211314. DOI: 10.1084/jem.20211314Search in Google Scholar
Schmid MC, Khan SQ, Kaneda MM, Pathria P, Shepard R, Louis TL, et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun. 2018 Dec 19;9(1):5379. DOI: 10.1038/s41467-018-07387-4Search in Google Scholar
Cormican S, Griffin MD. Human Monocyte Subset Distinctions and Function: Insights From Gene Expression Analysis. Front Immunol. 2020 Jun 4;11:1070. DOI: 10.3389/fimmu.2020.01070Search in Google Scholar
Jackson WD, Weinrich TW, Woollard KJ. Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets. Sci Rep. 2016 Jan 29;6:20038. DOI: 10.1038/srep20038Search in Google Scholar
Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007 Mar;81(3):584-92. DOI: 10.1189/jlb.0806510Search in Google Scholar
Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, et al. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int J Mol Sci. 2023 May 15;24(10):8757. DOI: 10.3390/ijms24108757Search in Google Scholar
Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, Bickel C, et al. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost. 2004 Aug;92(2):419-24. DOI: 10.1160/TH04-02-0095Search in Google Scholar
Wildgruber M, Czubba M, Aschenbrenner T, Wendorff H, Hapfelmeier A, Glinzer A, et al. Increased intermediate CD14++CD16++ monocyte subset levels associate with restenosis after peripheral percutaneous transluminal angioplasty. Atherosclerosis. 2016 Oct;253:128-134. DOI: 10.1016/j.atherosclerosis.2016.09.002Search in Google Scholar
Yamamoto H, Yoshida N, Shinke T, Otake H, Kuroda M, Sakaguchi K, et al. Impact of CD14++CD16+ monocytes on coronary plaque vulnerability assessed by optical coherence tomography in coronary artery disease patients. Atherosclerosis. 2018 Feb;269:245-251. DOI: 10.1016/j.atherosclerosis.2018.01.010Search in Google Scholar
Dregoesc MI, Țigu AB, Bekkering S, van der Heijden CDCC, Rodwell L, Bolboacă SD, et al. Intermediate monocytes are associated with the first major adverse cardiovascular event in patients with stable coronary artery disease. Int J Cardiol. 2024 Apr 1;400:131780. DOI: 10.1016/j.ijcard.2024.131780Search in Google Scholar
Marcovecchio PM, Thomas GD, Mikulski Z, Ehinger E, Mueller KAL, Blatchley A, et al. Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2043-2052. DOI: 10.1161/ATVBAHA.117.309123Search in Google Scholar
Mănescu IB, Mănescu M, Preda EC, Manu DR, Dobreanu M. The effect of postprandial in vivo and experimental in vitro hyperlipidemia on human peripheral blood monocytes. Acta Marisiensis Seria Medica. 2022 Dec;68(4):172-178. DOI: 10.2478/amma-2022-0026Search in Google Scholar
Dobreanu M, Oprea OR. Laboratory medicine in the era of precision medicine - dream or reality? Romanian Journal of Laboratory Medicine. 2019 Apr;27(2):115-124. DOI: 10.2478/rrlm-2019-0025Search in Google Scholar
Mănescu IB, Pál K, Lupu S, Dobreanu M. Conventional Biomarkers for Predicting Clinical Outcomes in Patients with Heart Disease. Life (Basel). 2022 Dec 15;12(12):2112. DOI: 10.3390/life12122112Search in Google Scholar
Pál K, Mănescu IB, Lupu S, Dobreanu M. Emerging Biomarkers for Predicting Clinical Outcomes in Patients with Heart Disease. Life (Basel). 2023 Jan 13;13(1):230. DOI: 10.3390/life13010230Search in Google Scholar
Xu L, Dai Perrard X, Perrard JL, Yang D, Xiao X, Teng BB, et al. Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1787-97. DOI: 10.1161/ATVBAHA.115.305609Search in Google Scholar
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al; CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017 Sep 21;377(12):1119-1131. DOI: 10.1056/NEJMoa1707914Search in Google Scholar