Uneingeschränkter Zugang

Small patients, big challenges: navigating the complex world of pediatric reference intervals


Zitieren

Centers for Disease Control and Prevention. “Strengthening Clinical Laboratories”. Retrieved from https://www.cdc.gov/csels/dls/strengthening-clinical-labs.html [accessed May 2024] Search in Google Scholar

Horn PS, Pesce AJ. Reference intervals: an update. Clin Chim Acta. 2003;334(1-2):5-23. DOI: 10.1016/S0009-8981(03)00133-5 Search in Google Scholar

CLSI and IFCC. C28-A3 document; Defining, establishing and verifying reference intervals in the clinical laboratory: approved guideline-third edition, 2008;28:1-76 Search in Google Scholar

Ozarda Y, Sikaris K, Streichert T, Macri J. IFCC Committee on Reference intervals and Decision Limits (C-RIDL). Distinguishing reference intervals and clinical decision limits - A review by the IFCC Committee on Reference Intervals and Decision Limits. Crit Rev Clin Lab Sci. 2018;55(6):420-431. DOI: 10.1080/10408363.2018.1482256 Search in Google Scholar

Chuah TY, Lim CY, Tan RZ, Pratumvinit B, Loh TP, Vasikaran S, Markus C; APFCB Harmonization of Reference Intervals Working Group. Functional Reference Limits: Describing Physiological Relationships and Determination of Physiological Limits for Enhanced Interpretation of Laboratory Results. Ann Lab Med. 2023 Sep 1;43(5):408-417. DOI: 10.3343/alm.2023.43.5.408 Search in Google Scholar

Emancipator K. Critical values: ASCP practice parameter. American Society of Clinical Pathologists. Am J Clin Pathol. 1997 Sep;108(3):247-53. DOI: 10.1093/ajcp/108.3.247 Search in Google Scholar

Marginean O. Cresterea si Dezvoltarea. Tratat de Pediatrie.Ed. I. MEDICHUB MEDIA; Bucuresti, Romania, 202. Search in Google Scholar

Centers for Disease Control and Prevention. Growth charts. Retrieved from https://www.cdc.gov/growthcharts/index.htm [accessed May 2024]. Search in Google Scholar

Coffin CM, Hamilton MS, Pysher TJ, Bach P, Ashwood E, Schweiger J et al. Pediatric laboratory medicine: current challenges and future opportunities. Am J Clin Pathol. 2002 May;117(5):683-90. DOI: 10.1309/C52D-BY0U-VXXU-R360 Search in Google Scholar

Santos RP, Tristram D. A practical guide to the diagnosis, treatment, and prevention of neonatal infections. Pediatr Clin North Am. 2015 Apr;62(2):491-508. DOI: 10.1016/j. pcl.2014.11.010 Search in Google Scholar

Centers for Disease Control and Prevention. Congenital syphilis. Retrieved from https://www.cdc.gov/std/treatment-guidelines/congenital-syphilis.htm [accessed June 2024] Search in Google Scholar

Read JS; Committee on Pediatric AIDS, American Academy of Pediatrics. Diagnosis of HIV-1 infection in children younger than 18 months in the United States. Pediatrics. 2007 Dec;120(6):e1547-62. DOI: 10.1542/peds.2007-2951 Search in Google Scholar

Schnabl K, Chan MK, Gong Y, Adeli K. Closing the gaps in paediatric reference intervals: the CALIPER initiative. Clin Biochem Rev. 2008 Aug;29(3):89-96. Search in Google Scholar

Jones P. M. Pediatric Clinical Biochemistry: Why Is It Different? Biochemical and Molecular Basis of Pediatric Disease 4th Edition. AACC Press, USA, 2010. Search in Google Scholar

Lepage N, Li D, Kavsak PA, Bamforth F, Callahan J, Dooley K, Potter M. Incomplete pediatric reference intervals for the management of patients with inborn errors of metabolism. Clin Biochem. 2006 Jun;39(6):595-9. DOI: 10.1016/j.clinbiochem.2006.02.011 Search in Google Scholar

Rahman M, George C, Monagle P. Hot topics in coagulation testing: Important considerations for testing children for bleeding/thrombotic disorders. Int J Lab Hematol. 2020 Jun;42 Suppl 1:68-74. DOI: 10.1111/ijlh.13198 Search in Google Scholar

Jung B, Adeli K. Clinical laboratory reference intervals in pediatrics: the CALIPER initiative. Clin Biochem 2009;42:1589-1595 DOI: 10.1016/j.clinbiochem.2009.06.025 Search in Google Scholar

Soldin OP, Soldin SJ. Review: therapeutic drug monitoring in pediatrics. Ther Drug Monit. 2002 Feb;24(1):1-8. DOI: 10.1097/00007691-200202000-00001 Search in Google Scholar

Aricò MO, Valletta E, Caselli D. Appropriate Use of Antibiotic and Principles of Antimicrobial Stewardship in Children. Children (Basel). 2023 Apr 17;10(4):740. DOI: 10.3390/children10040740 Search in Google Scholar

Christensen B, Glueck C, Kwiterovich P, Degroot I, Chase G, Heiss G et al. Plasma cholesterol and triglyceride distributions in 13,665 children and adolescents: the Prevalence Study of the Lipid Research Clinics Program. Pediatr Res. 1980 Mar;14(3):194-202. DOI: 10.1203/00006450-198003000-00004 Search in Google Scholar

Fiorentino R, Chiarelli F. Treatment of Dyslipidaemia in Children. Biomedicines. 2021 Aug 24;9(9):1078. DOI: 10.3390/biomedicines9091078 Search in Google Scholar

Roth-Cline M, Gerson J, Bright P, Lee CS, Nelson RM. Ethical considerations in conducting pediatric research. Handb Exp Pharmacol. 2011;205:219-44. DOI: 10.1007/978-3-642-20195-0_11 Search in Google Scholar

Shaw JL, Binesh Marvasti T, Colantonio D, Adeli K. Pediatric reference intervals: challenges and recent initiatives. Crit Rev Clin Lab Sci. 2013 Feb-Apr;50(2):37-50. DOI: 10.3109/10408363.2013.786673 Search in Google Scholar

Ceriotti F. Establishing pediatric reference intervals: a challenging task. Clin Chem. 2012 May;58(5):808-10. DOI: 10.1373/clinchem.2012.183483 Search in Google Scholar

Lyle AN, Pokuah F, Dietzen DJ, Wong ECC, Pyle-Eilola AL, Fuqua JS et al. Current State of Pediatric Reference Intervals and the Importance of Correctly Describing the Biochemistry of Child Development: A Review. JAMA Pediatr. 2022 Jul 1;176(7):699-714. DOI: 10.1001/jamapediatrics.2022.0794 Search in Google Scholar

Madsen LP, Rasmussen MK, Bjerregaard LL, Nøhr SB, Ebbesen F. Impact of blood sampling in very preterm infants. Scand J Clin Lab Invest. 2000 Apr;60(2):125-32. DOI: 10.1080/00365510050184949 Search in Google Scholar

Broder-Fingert S, Crowley WF, Jr, Boepple PA. Safety of frequent venous blood sampling in a pediatric research population. J Pediatr. 2009;154:578-81 DOI: 10.1016/j.jpeds.2008.10.007 Search in Google Scholar

Cole M, Boddy AV, Kearns P, Teh KH, Price L, Parry A, et al.UKCCSG Pharmacology group Potential clinical impact of taking multiple blood samples for research studies in paediatric oncology: how much do we really know? Pediatr Blood Cancer. 2006;46:723-7 DOI: 10.1002/pbc.20463 Search in Google Scholar

Aytekin M, Emerk K. Accurate Reference Intervals are Required for Accurate Diagnosis and Monitoring of Patients. EJIFCC. 2008 Oct 16;19(2):137-41. Search in Google Scholar

Ozarda Y. Establishing and using reference intervals. Turkish Journal of Biochemistry. 2020;45(1): 1-10. DOI: 10.1515/tjb-2017-0299 Search in Google Scholar

Ceriotti F, Hinzmann R, Panteghini M. Reference intervals: the way forward. Ann Clin Biochem. 2009 Jan;46(Pt 1):8-17. DOI: 10.1258/acb.2008.008170 Search in Google Scholar

Loh T, Cooke B, Markus C, Zakaria R, Tran M, Ho C, Greaves R, On behalf of the IFCC Working Group on Method Evaluation Protocols. Method evaluation in the clinical laboratory. Clinical Chemistry and Laboratory Medicine (CCLM). 2023;61(5): 751-758. DOI: 10.1515/cclm-2022-0878 Search in Google Scholar

Plebani M. Harmonization in laboratory medicine: the complete picture. Clinical Chemistry and Laboratory Medicine (CCLM). 2013;51(4): 741-751 DOI: 10.1515/cclm-2013-0075 Search in Google Scholar

Smellie WS; Association for Clinical Biochemistry’s Clinical Practice Section. Time to harmonise common laboratory test profiles. BMJ. 2012 Mar 20;344:e1169. DOI: 10.1136/bmj.e1169 Search in Google Scholar

Plebani M. Harmonization in laboratory medicine: Requests, samples, measurements and reports. Crit Rev Clin Lab Sci. 2016;53(3):184-96. DOI: 10.3109/10408363.2015.1116851 Search in Google Scholar

Katayev A, Balciza C, Seccombe DW. Establishing reference intervals for clinical laboratory test results: is there a better way? Am J Clin Pathol. 2010 Feb;133(2):180-6. DOI: 10.1309/AJCPN5BMTSF1CDYP Search in Google Scholar

Tate JR, Yen T, Jones GR. Transference and validation of reference intervals. Clin Chem. 2015 Aug;61(8):1012-5. DOI: 10.1373/clinchem.2015.243055 Search in Google Scholar

Zierk J, Metzler M, Rauh M. Data mining of pediatric reference intervals. Journal of Laboratory Medicine. 2021;45(6): 311-317. DOI: 10.1515/labmed-2021-0120 Search in Google Scholar

Haeckel R, Wosniok W, Arzideh F, Zierk J, Gurr E, Streichert T. Critical comments to a recent EFLM recommendation for the review of reference intervals. Clin Chem Lab Med. 2017 Mar 1;55(3):341-347. DOI: 10.1515/cclm-2016-1112 Search in Google Scholar

Farrell CL, Nguyen L. Indirect Reference Intervals: Harnessing the Power of Stored Laboratory Data. Clin Biochem Rev. 2019 May;40(2):99-111. DOI: 10.33176/AACB-19-00022 Search in Google Scholar

Jones G, Haeckel R, Loh T, Sikaris K, Streichert T, Katayev A et al on behalf of the IFCC Committee on Reference Intervals and Decision Limits. Indirect methods for reference interval determination - review and recommendations. Clinical Chemistry and Laboratory Medicine (CCLM). 2019;57(1): 20-29. DOI: 10.1515/cclm-2018-0073 Search in Google Scholar

Doyle K, Bunch DR. Reference intervals: past, present, and future. Crit Rev Clin Lab Sci. 2023 Sep;60(6):466-482. DOI: 10.1080/10408363.2023.2196746 Search in Google Scholar

Haeckel R, Wosniok W, Streichert T, Members of the Section Guide Limits of the DGKL. Review of potentials and limitations of indirect approaches for estimating reference limits/intervals of quantitative procedures in laboratory medicine. Journal of Laboratory Medicine. 2021;45(2): 35-53. DOI: 10.1515/labmed-2020-0131 Search in Google Scholar

Haeckel R. Indirect approaches to estimate reference intervals. Journal of Laboratory Medicine. 2021;45(2): 31-33. DOI: 10.1515/labmed-2021-0003 Search in Google Scholar

Ammer T, Schützenmeister A, Prokosch HU, Rauh M, Rank CM, Zierk J. refineR: A Novel Algorithm for Reference Interval Estimation from Real-World Data. Sci Rep. 2021 Aug 6;11(1):16023. DOI: 10.1038/s41598-021-95301-2 Search in Google Scholar

Mrosewski I, Dähn T, Hehde J, Kalinowski E, Lindner I, Meyer TM et al. Indirectly determined hematology reference intervals for pediatric patients in Berlin and Brandenburg. Clin Chem Lab Med. 2021 Dec 14;60(3):408-432. DOI: 10.1515/cclm-2021-0853 Search in Google Scholar

Zierk J, Arzideh F, Haeckel R, Rascher W, Rauh M, Metzler M. Indirect determination of pediatric blood count reference intervals. Clin Chem Lab Med. 2013 Apr;51(4):863-72. DOI: 10.1515/cclm-2012-0684 Search in Google Scholar

Shaw JL, Cohen A, Konforte D, Binesh-Marvasti T, Colantonio DA, Adeli K. Validity of establishing pediatric reference intervals based on hospital patient data: a comparison of the modified Hoffmann approach to CALIPER reference intervals obtained in healthy children. Clin Biochem. 2014 Feb;47(3):166-72. DOI: 10.1016/j.clinbiochem.2013.11.008 Search in Google Scholar

IFCC Global Reference Interval Database. Reference Interval Studies. Retrieved from https://grid.ifcc.org/studies/ [accessed June 2024] Search in Google Scholar

Flanders MM, Crist RA, Roberts WL, Rodgers GM. Pediatric reference intervals for seven common coagulation assays. Clin Chem 2005;51:1738-1742. DOI: 10.1373/clinchem.2005.050211 Search in Google Scholar

Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM, Meikle AW. Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem 2006;52:1559-1567. DOI: 10.1373/clinchem.2006.068445 Search in Google Scholar

Clifford SM, Bunker AM, Jacobsen JR, Roberts WL. Age and gender specific pediatric reference intervals for aldolase, amylase, ceruloplasmin, creatine kinase, pancreatic amylase, prealbumin, and uric acid. Clin Chim Acta 2011;412:788-790. DOI: 10.1016/j.cca.2011.01.011 Search in Google Scholar

Johnson-Davis KL, Moore SJ, Owen WE, Cutler JM, Frank EL. A rapid HPLC method used to establish pediatric reference intervals for vitamins A and E. Clin Chim Acta 2009;405:35-38. DOI: 10.1016/j.cca.2009.03.058 Search in Google Scholar

Meikle AW, Kushnir MM, Rockwood AL, Pattison EG, Terry AH, Sandrock T, Bunker AM, Phanslkar AR, Owen WE, Roberts WL. Adrenal steroid concentrations in children seven to seventeen years of age. J Pediatr Endocrinol Metab 2007;20:1281-1291. DOI: 10.1515/JPEM.2007.20.12.1281 Search in Google Scholar

Wyness SP, Roberts WL, Straseski JA. Pediatric reference intervals for four serum bone markers using two automated immunoassays. Clin Chim Acta 2013;415:169-172. DOI: 10.1016/j.cca.2012.10.036 Search in Google Scholar

Southcott EK, Kerrigan JL, Potter JM, Telford RD, Waring P, Reynolds GJ, Lafferty AR, Hickman PE. Establishment of pediatric reference intervals on a large cohort of healthy children. Clin Chim Acta 2010;411:1421-1427. DOI: 10.1016/j.cca.2010.06.018 Search in Google Scholar

Koerbin G, Abhayaratna WP, Potter JM, Apostoloska S, Telford RD, Hickman PE. NTproBNP concentrations in healthy children. Clin Biochem 2012;45:1158-1160. DOI: 10.1016/j. clinbiochem.2012.05.008 Search in Google Scholar

Hoq M, Matthews S, Karlaftis V, Burgess J, Cowley J, Donath S, Carlin J, Yen T, Ignjatovic V, Monagle P; HAPPI Kids study team. Reference Values for 30 Common Biochemistry Analytes Across 5 Different Analyzers in Neonates and Children 30 Days to 18 Years of Age. Clin Chem. 2019 Oct;65(10):1317-1326. DOI: 10.1373/clinchem.2019.306431 Search in Google Scholar

Cai T, Karlaftis V, Hearps S, Matthews S, Burgess J, Monagle P, Ignjatovic V; HAPPI Kids study team. Reference intervals for serum cystatin C in neonates and children 30 days to 18 years old. Pediatr Nephrol. 2020 Oct;35(10):1959-1966. DOI: 10.1007/s00467-020-04612-5 Search in Google Scholar

Tate JR, Sikaris KA, Jones GR, Yen T, Koerbin G, Ryan J, Reed M, Gill J, Koumantakis G, Hickman P, Graham P. Harmonising adult and paediatric reference intervals in Australia and New Zeeland: an evidence-based approach for establishing a first panel of chemistry analytes. Clin Biochem Rev. 2014 Nov;35(4):213-35. Search in Google Scholar

CALIPER. CALIPER Project Achievements. Retrieved from https://caliperproject.ca/ [accessed June 2024] Search in Google Scholar

Adeli K, Higgins V, Trajcevski K, White-Al Habeeb N. The Canadian laboratory initiative on pediatric reference intervals: A CALIPER white paper. Crit Rev Clin Lab Sci. 2017 Sep;54(6):358-413. DOI: 10.1080/10408363.2017.1379945 Search in Google Scholar

Bohn MK, Higgins V, Tahmasebi H, Hall A, Liu E, Adeli K et al. Complex biological patterns of hematology parameters in childhood necessitating age- and sex-specific reference intervals for evidence-based clinical interpretation. Int J Lab Hematol. 2020 Dec;42(6):750-760. DOI: 10.1111/ijlh.13306 Search in Google Scholar

Tahmasebi H, Higgins V, Bohn MK, Hall A, Adeli K. CALIPER Hematology Reference Standards (I). Am J Clin Pathol. 2020 Aug 5;154(3):330-341. DOI: 10.1093/ajcp/aqaa059 Search in Google Scholar

Higgins V, Tahmasebi H, Bohn MK, Hall A, Adeli K. CALIPER Hematology Reference Standards (II). Am J Clin Pathol. 2020 Aug 5;154(3):342-352. DOI: 10.1093/ajcp/aqaa057 Search in Google Scholar

Bohn MK, Higgins V, Asgari S, Leung F, Hoffman B et al. Paediatric reference intervals for 17 Roche cobas 8000 e602 immunoassays in the CALIPER cohort of healthy children and adolescents. Clin Chem Lab Med. 2019 Nov 26;57(12):1968-1979. DOI: 10.1515/cclm-2019-0707 Search in Google Scholar

Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012 May;58(5):854-68. DOI: 10.1373/clinchem.2011.177741 Search in Google Scholar

Teodoro-Morrison T, Kyriakopoulou L, Chen YK, Raizman JE, Bevilacqua V, Chan MK et al. Dynamic biological changes in metabolic disease biomarkers in childhood and adolescence: A CALIPER study of healthy community children. Clin Biochem. 2015 Sep;48(13-14):828-36. DOI: 10.1016/j.clinbiochem.2015.05.005 Search in Google Scholar

Raizman JE, Quinn F, Armbruster DA, Adeli K. Pediatric reference intervals for calculated free testosterone, bioavailable testosterone and free androgen index in the CALIPER cohort. Clin Chem Lab Med. 2015 Sep 1;53(10):e239-43. DOI: 10.1515/cclm-2015-0027 Search in Google Scholar

Konforte D, Shea JL, Kyriakopoulou L, Colantonio D, Cohen AH, Shaw J et al. Complex biological pattern of fertility hormones in children and adolescents: a study of healthy children from the CALIPER cohort and establishment of pediatric reference intervals. Clin Chem. 2013 Aug;59(8):1215-27. DOI: 10.1373/clinchem.2013.204123 Search in Google Scholar

Bailey D, Colantonio D, Kyriakopoulou L, Cohen AH, Chan MK, Armbruster D et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem. 2013 Sep;59(9):1393-405. DOI: 10.1373/clinchem.2013.204222 Search in Google Scholar

Pasic MD, Colantonio DA, Chan MK, Venner AA, Brinc D, Adeli K. Influence of fasting and sample collection time on 38 biochemical markers in healthy children: a CALIPER substudy. Clin Biochem 2012;45:1125-1130. DOI: 10.1016/j.clinbiochem.2012.07.089 Search in Google Scholar

Bevilacqua V, Chan MK, Chen Y, Armbruster D, Schodin B, Adeli K. Pediatric population reference value distributions for cancer biomarkers and covariate-stratified reference intervals in the CALIPER cohort. Clin Chem 2014;60:1532-1542. DOI: 10.1373/clinchem.2014.229799 Search in Google Scholar

Bohn MK, Hall A, Wilson S, Henderson T, Adeli K. Pediatric Reference Intervals for Critical Point-of-Care Whole Blood Assays in the CALIPER Cohort of Healthy Children and Adolescents. Am J Clin Pathol. 2021 Nov 8;156(6):1030-1037. DOI: 10.1093/ajcp/aqab064 Search in Google Scholar

Ni X, Song W, Peng X, Shen Y, Peng Y, Li Q et al; study group of Pediatric Reference Intervals in China (PRINCE). Pediatric reference intervals in China (PRINCE): design and rationale for a large, multicenter collaborative cross-sectional study. Sci Bull (Beijing). 2018 Dec 30;63(24):1626-1634. DOI: 10.1016/j. scib.2018.11.024 Search in Google Scholar

Song W, Yan R, Peng M, Jiang H, Li G, Cao S, Jiang Y, Guo Z, Chen D, Yang H, Xu J, Chang Y, Xiang Y, Zhao M, Li C, Shen Y, Jin F, Li Q, Wang Y, Peng Y, Hu L, Liu Y, Zhang X, Chen W, Peng X, Ni X. Age and sex specific reference intervals of 13 hematological analytes in Chinese children and adolescents aged from 28 days up to 20 years: the PRINCE study. Clin Chem Lab Med. 2022 May 24;60(8):1250-1260. DOI: 10.1515/cclm-2022-0304 Search in Google Scholar

Peng X, Peng Y, Zhang C, Zhao M, Yang H, Cao S et al; Study Group of Pediatric Reference Intervals in China (PRINCE). Reference intervals of 14 biochemical markers for children and adolescence in China: the PRINCE study. Clin Chem Lab Med. 2022 Aug 8;60(10):1627-1639. DOI: 10.1515/cclm-2022-0299 Search in Google Scholar

Yan R, Peng Y, Hu L, Zhang W, Li Q, Wang Y et al. Continuous reference intervals for 21 biochemical and hematological analytes in healthy Chinese children and adolescents: The PRINCE study. Clin Biochem. 2022 Apr;102:9-18. DOI: 10.1016/j. clinbiochem.2022.01.004 Search in Google Scholar

Rustad P, Felding P, Franzson L, Kairisto V, Lahti A, Mårtensson A, Hyltoft Petersen P, Simonsson P, Steensland H, Uldall A. The Nordic Reference Interval Project 2000: recommended reference intervals for 25 common biochemical properties. Scand J Clin Lab Invest. 2004;64(4):271-84. DOI: 10.1080/00365510410006324 Search in Google Scholar

Nordin G, Mårtensson A, Swolin B, Sandberg S, Christensen NJ, Thorsteinsson V, Franzson L, Kairisto V, Savolainen ER. A multicentre study of reference intervals for haemoglobin, basic blood cell counts and erythrocyte indices in the adult population of the Nordic countries. Scand J Clin Lab Invest. 2004;64(4):385-98. DOI: 10.1080/00365510410002797 Search in Google Scholar

Kohse KP. KiGGS - the German survey on children’s health as data base for reference intervals and beyond. Clin Biochem 2014;47:742-743. DOI: 10.1016/j.clinbiochem.2014.05.039 Search in Google Scholar

Schaffrath Rosario A, Schlaud M, Kamtsiuris P; KiGGS Study Group. The first KiGGS follow-up (KiGGS Wave 1): study conduct, sample design, and response. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014 Jul;57(7):747-61. DOI: 10.1007/s00103-014-1973-9 Search in Google Scholar

Hoffmann R, Lange M, Butschalowsky H, Houben R, Schmich P, Allen J, Kuhnert R, Rosario AS, Gößwald A. KiGGS Wave 2 cross-sectional study - participant acquisition, response rates and representativeness. J Health Monit. 2018 Mar 15;3(1):78-91. Search in Google Scholar

Mauz E, Lange M, Houben R, Hoffmann R, Allen J, Gößwald A, Hölling H, Lampert T, Lange C, Poethko-Müller C, Richter A, Rosario AS, von Schenck U, Ziese T, Kurth BM; KiGGS Cohort Research Team. Cohort profile: KiGGS cohort longitudinal study on the health of children, adolescents and young adults in Germany. Int J Epidemiol. 2020 Apr 1;49(2):375-375k. DOI: 10.1093/ije/dyz231 Search in Google Scholar

Witte T, Ittermann T, Thamm M, Riblet NB, Völzke H. Association between serum thyroid-stimulating hormone levels and serum lipids in children and adolescents: a population-based study of german youth. J Clin Endocrinol Metab. 2015 May;100(5):2090-7. DOI: 10.1210/jc.2014-4466 Search in Google Scholar

Thierfelder W, Dortschy R, Hintzpeter B, Kahl H, Scheidt-Nave C. Biochemical measures in the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2007 May-Jun;50(5-6):757-70. DOI: 10.1007/s00103-007-0238-2 Search in Google Scholar

Zierk J, Arzideh F, Rechenauer T, Haeckel R, Rascher W, Metzler M, Rauh M. Age- and sex-specific dynamics in 22 hematologic and biochemical analytes from birth to adolescence. Clin Chem. 2015 Jul;61(7):964-73. DOI: 10.1373/clinchem.2015.239731 Search in Google Scholar

Zierk J, Hirschmann J, Toddenroth D, Arzideh F, Haeckel R, Bertram A et al. Next-generation reference intervals for pediatric hematology. Clin Chem Lab Med. 2019 Sep 25;57(10):1595-1607. DOI: 10.1515/cclm-2018-1236 Search in Google Scholar

Zierk J, Arzideh F, Haeckel R, Cario H, Frühwald MC, Groß HJ et al. Pediatric reference intervals for alkaline phosphatase. Clin Chem Lab Med. 2017 Jan 1;55(1):102-110. DOI: 10.1515/cclm-2016-0318 Search in Google Scholar

Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr. 2021 Jan 12;8:581461. DOI: 10.3389/fped.2020.581461 Search in Google Scholar

Vuong J, Qiu Y, La M, Clarke G, Swinkels DW, Cembrowski G. Reference intervals of complete blood count constituents are highly correlated to waist circumference: should obese patients have their own “normal values?”. Am J Hematol. 2014 Jul;89(7):671-7. DOI: 10.1002/ajh.23713 Search in Google Scholar

Tomer Ziv-Baran, Asaf Wasserman, Ilana Goldiner, Moshe Stark, Shani Shenhar-Tsarfaty et al. The association between elevated body mass index and wide blood chemistry panel results in apparently healthy individuals. Am J Med Sci . 2023. 365(2):152-61. DOI: 10.1016/j.amjms.2022.07.019 Search in Google Scholar

Higgins V, Omidi A, Tahmasebi H, Asgari S, Gordanifar K, Nieuwesteeg M, Adeli K. Marked Influence of Adiposity on Laboratory Biomarkers in a Healthy Cohort of Children and Adolescents. J Clin Endocrinol Metab. 2020 Apr 1;105(4):e1781-97. DOI: 10.1210/clinem/dgz161 Search in Google Scholar

Deutschbein T, Mann K, Petersenn S. Total Testosterone and Calculated Estimates for Free and Bioavailable Testosterone: Influence of Age and Body Mass Index and Establishment of Sex-Specific Reference Ranges. Horm Metab Res. 2015 Oct;47(11):846-54. DOI: 10.1055/s-0034-1395569 Search in Google Scholar

Jørgensen RM, Bøttger B, Vestergaard ET, Kremke B, Bahnsen RF, Nielsen BW et al. Uric Acid Is Elevated in Children With Obesity and Decreases After Weight Loss. Front Pediatr. 2022 Jan 4;9:814166. DOI: 10.3389/fped.2021.814166 Search in Google Scholar

Tahmasebi H, Asgari S, Hall A, Higgins V, Chowdhury A, Thompson R et al. Influence of ethnicity on biochemical markers of health and disease in the CALIPER cohort of healthy children and adolescents. Clin Chem Lab Med. 2020 Mar 26;58(4):605-617. DOI: 10.1515/cclm-2019-0876 Search in Google Scholar

Quintó L, Aponte JJ, Sacarlal J, Espasa M, Aide P, Mandomando I. Haematological and biochemical indices in young African children: in search of reference intervals. Trop Med Int Health. 2006 Nov;11(11):1741-8. DOI: 10.1111/j.1365-3156.2006.01764.x Search in Google Scholar

Gitaka J, Ogwang C, Ngari M, Akoo P, Olotu A, Kerubo C et al. Clinical laboratory reference values amongst children aged 4 weeks to 17 months in Kilifi, Kenya: A cross sectional observational study. PLoS One. 2017 May 11;12(5):e0177382. DOI: 10.1371/journal.pone.0177382 Search in Google Scholar

Kibaya RS, Bautista CT, Sawe FK, Shaffer DN, Sateren WB, Scott PT, Michael NL, Robb ML, Birx DL, de Souza MS. Reference ranges for the clinical laboratory derived from a rural population in Kericho, Kenya. PLoS One. 2008 Oct 3;3(10):e3327. DOI: 10.1371/journal.pone.0003327 Search in Google Scholar

Davies PS, Bates CJ, Cole TJ, Prentice A, Clarke PC. Vitamin D: seasonal and regional differences in preschool children in Great Britain. Eur J Clin Nutr. 1999 Mar;53(3):195-8. DOI: 10.1038/sj.ejcn.1600697 Search in Google Scholar

Cashman KD, Dowling KG, Škrabáková Z, Gonzalez-Gross M, Valtueña J, De Henauw S et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016 Apr;103(4):1033-44. DOI: 10.3945/ajcn.115.120873 Search in Google Scholar

Völzke H, Alte D, Kohlmann T, Lüdemann J, Nauck M, John U et al. Reference intervals of serum thyroid function tests in a previously iodine-deficient area. Thyroid. 2005 Mar;15(3):279-85. DOI: 10.1089/thy.2005.15.279 Search in Google Scholar

Lauridsen KM, Kristiansen HP, Winther-Larsen A. Pediatric reference intervals of the hemoglobin fractions HbA2, HbF and HbA0 using high-performance liquid chromatography and capillary electrophoresis. Clin Chim Acta. 2023 Sep 1;549:117557. DOI: 10.1016/j.cca.2023.117557 Search in Google Scholar

Colah R, Gorakshakar A, Nadkarni A. Global burden, distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert Rev Hematol. 2010;3:103-117. DOI: 10.1586/ehm.09.74 Search in Google Scholar

Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S et al; Coeliac EU Cluster, Project Epidemiology. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med. 2010 Dec;42(8):587-95. DOI: 10.3109/07853890.2010.505931 Search in Google Scholar

Cronin CC, Shanahan F. Why is celiac disease so common in Ireland? Perspect Biol Med. 2001 Summer;44(3):342-52. DOI: 10.1353/pbm.2001.0045 Search in Google Scholar

Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci. 2023 Mar 27;24(7):6275. DOI: 10.3390/ijms24076275 Search in Google Scholar

Fraser CG. Inherent biological variation and reference values. Clin Chem Lab Med. 2004;42(7):758-64. DOI: 10.1515/CCLM.2004.128 Search in Google Scholar

Fraser, CG. Biological variation: from principles to practice. Washington DC: AACC Press; 2001. Search in Google Scholar

Whyte MB, Kelly P. The normal range: it is not normal and it is not a range. Postgrad Med J. 2018 Nov;94(1117):613-616. DOI: 10.1136/postgradmedj-2018-135983 Search in Google Scholar

Miller WG, Horowitz GL, Ceriotti F, Fleming JK, Greenberg N, Katayev A, Jones GR, Rosner W, Young IS. Reference Intervals: Strengths, Weaknesses, and Challenges. Clin Chem. 2016 DOI: 10.1373/clinchem.2016.256511 Search in Google Scholar

Timbrell NE. The Role and Limitations of the Reference Interval Within Clinical Chemistry and Its Reliability for Disease Detection. Br J Biomed Sci. 2024 Feb 28;81:12339. DOI: 10.3389/bjbs.2024.12339 Search in Google Scholar

Fraser CG. Reference change values. Clin Chem Lab Med. 2011;50(5):807-812 DOI: 10.1007/978-1-4419-1695-2_147 Search in Google Scholar

Aarsand, AK, Webster, C, Coskun, A, Gonzales-Lao, E, Diaz-Garzon, J, Roraas, T, et al. EFLM biological variation database https://biologicalvariation.eu [Accessed June 2024] Search in Google Scholar

Randell EW, Yenice S. Delta Checks in the clinical laboratory. Crit Rev Clin Lab Sci. 2019 Mar;56(2):75-97. DOI: 10.1080/10408363.2018.1540536 Search in Google Scholar

CLSI. Use of delta checks in the medical laboratory; Approved Guideline - First Edition. CLSI Document EP33. Wayne, PA: Clinical and Laboratory Standards Institute; 2016. Search in Google Scholar

Hong J, Cho EJ, Kim HK, Lee W, Chun S, Min WK. Application and optimization of reference change values for Delta Checks in clinical laboratory. J Clin Lab Anal. 2020 Dec;34(12):e23550. DOI: 10.1002/jcla.23550 Search in Google Scholar

Plebani M. Harmonization of Clinical Laboratory Information - Current and Future Strategies. EJIFCC. 2016 Feb 9;27(1):15-22. Search in Google Scholar

Panteghini M. Implementation of standardization in clinical practice: not always an easy task. Clin Chem Lab Med. 2012 Feb 29;50(7):1237-41. DOI: 10.1515/cclm.2011.791 Search in Google Scholar

Tate JR, Johnson R, Barth JH, Panteghini M. Harmonization of laboratory testing - a global activity. Clin Chim Acta 2014;432: 1-3. DOI: 10.1016/j.cca.2014.02.006 Search in Google Scholar

Gruson D. Big Data, artificial intelligence and laboratory medicine: time for integration. Adv Lab Med. 2021 Feb 10;2(1):1-7. DOI: 10.1515/almed-2021-0003 Search in Google Scholar

Martinez-Sanchez L, Marques-Garcia F, Ozarda Y, Blanco A, Brouwer N, Canalias F et al. Big data and reference intervals: rationale, current practices, harmonization and standardization prerequisites and future perspectives of indirect determination of reference intervals using routine data. Advances in Laboratory Medicine / Avances en Medicina de Laboratorio. 2021;2(1): 9-16. DOI: 10.1515/almed-2020-0034 Search in Google Scholar

Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019 May;20(5):e262-e273. doi: 10.1016/S1470-2045(19)30149-4. Erratum in: Lancet Oncol. 2019 Jun;20(6):293. DOI: 10.1016/S1470-2045(19)30149-4 Search in Google Scholar

Gruson D, Helleputte T, Rousseau P, Gruson D. Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation. Clin Biochem. 2019 Jul;69:1-7. DOI: 10.1016/j. clinbiochem.2019.04.013 Search in Google Scholar

Prodan Žitnik I, Černe D, Mancini I, Simi L, Pazzagli M, Di Resta C et al; behalf of EFLM/ESPT working group of Personalised Laboratory Medicine on. Personalized laboratory medicine: a patient-centered future approach. Clin Chem Lab Med. 2018 Nov 27;56(12):1981-1991. DOI: 10.1515/cclm-2018-0181 Search in Google Scholar

Coskun A, Sandberg S, Unsal I, Yavuz FG, Cavusoglu C, Serteser M, Kilercik M, Aarsand AK. Personalized reference intervals -statistical approaches and considerations. Clin Chem Lab Med. 2021 Dec 13;60(4):629-635. DOI: 10.1515/cclm-2021-1066 Search in Google Scholar

Coskun A, Sandberg S, Unsal I, Serteser M, Aarsand AK. Personalized reference intervals: from theory to practice. Crit Rev Clin Lab Sci. 2022 Nov;59(7):501-516. DOI: 10.1080/10408363.2022.2070905 Search in Google Scholar

Coşkun A, Sandberg S, Unsal I, Cavusoglu C, Serteser M, Kilercik M, Aarsand AK. Personalized Reference Intervals in Laboratory Medicine: A New Model Based on Within-Subject Biological Variation. Clin Chem. 2021 Jan 30;67(2):374-384. DOI: 10.1093/clinchem/hvaa233 Search in Google Scholar

eISSN:
2284-5623
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie, Humanbiologie, Mikrobiologie und Virologie