Uneingeschränkter Zugang

Correlations of cofilin1 and phosphorylation at Ser3 site with sensitivity of elderly patients with non-small cell lung cancer to radiotherapy


Zitieren

1. Cohen-Inbar O, Lee CC, Mousavi SH, Kano H, Mathieu D, Meola A, et al. Intracranial Stereotactic radiosurgery for intracranial hemangiopericytomas: a multicenter study. J Neurosurg. 2017;126(3):744-54. DOI: 10.3171/2016.1.JNS15286010.3171/2016.1.JNS15286027104850 Search in Google Scholar

2. Müller CB, De Bastiani MA, Becker M, França FS, Branco MA, Castro MA, et al. Potential crosstalk between cofilin-1 and EGFR pathways in cisplatin resistance of non-small-cell lung cancer. Oncotarget. 2015;6(6):3531-9. DOI: 10.18632/oncotarget.347110.18632/oncotarget.3471441413425784483 Search in Google Scholar

3. Tahtamouni LH, Shaw AE, Hasan MH, Yasin SR, Bamburg JR. Non-overlapping activities of ADF and cofilin-1 during the migration of metastatic breast tumor cells. BMC Cell Biol. 2013;14:45. DOI: 10.1186/1471-2121-14-4510.1186/1471-2121-14-45385095324093776 Search in Google Scholar

4. Wang L, Buckley AF, Spurney RF. Regulation of cofilin phosphorylation in glomerular podocytes by testis specific kinase 1 (TESK1). Sci Rep. 2018;8(1):12286. DOI: 10.1038/s41598-018-30115-310.1038/s41598-018-30115-3609584930115939 Search in Google Scholar

5. Lindström NO, Neves C, McIntosh R, Miedzybrodzka Z, Vargesson N, Collinson JM. Tissue specific char-acterisation of Lim-kinase 1 expression during mouse embryogenesis. Gene Expr Patterns. 2011;11(3-4):221-32. DOI: 10.1016/j.gep.2010.12.00310.1016/j.gep.2010.12.003340795521167960 Search in Google Scholar

6. Zhang Y, Wang Y, Xue J. Paclitaxel inhibits breast cancer metastasis via suppression of Aurora kinasemediated cofilin1 activity. Exp Ther Med. 2018;15(2):1269-76. DOI: 10.3892/etm.2017.558810.3892/etm.2017.5588577665929434713 Search in Google Scholar

7. Kuznetsov MB, Gubernov VV, Kolobov AV. Analysis of anticancer efficiency of combined fractionated radiotherapy and antiangiogenic therapy via mathematical modelling. Russ J Num Anal Math Model. 2018;33(4):225-42. DOI: 10.1515/rnam-2018-001910.1515/rnam-2018-0019 Search in Google Scholar

8. Haslett K, Bayman N, Franks K, Groom N, Harden SV, Harris C, et al. Isotoxic Intensity Modulated Radiation Therapy in Stage III Non-Small Cell Lung Cancer: A Feasibility Study. Int J Radiat Oncol Biol Phys. 2021;109(5):1341-8. DOI: 10.1016/j. ijrobp.2020.11.040 Search in Google Scholar

9. Chen S, Huang H, Liu Y, Lai C, Peng S, Zhou L, et al. A multi-parametric prognostic model based on clinical features and serological markers predicts overall survival in non-small cell lung cancer patients with chronic hepatitis B viral infection. Cancer Cell Int. 2020;20(1):555. DOI: 10.1186/s12935-020-01635-810.1186/s12935-020-01635-8767818333292228 Search in Google Scholar

10. Zhang Z, Chen P, Guo C, Meng X, Wang D. Effect of LIM kinase 1 overexpression on behaviour of endometriosis-derived stromal cells. Cell Tissue Res. 2015;359(3):885-93. DOI: 10.1007/s00441-014-2068-510.1007/s00441-014-2068-525529997 Search in Google Scholar

11. Rhodes LV, Martin EC, Segar HC, Miller DF, Buechlein A, Rusch DB, et al. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6(18):16638-52. DOI: 10.18632/oncotarget.318410.18632/oncotarget.3184459929526062653 Search in Google Scholar

12. Sun W, Yan H, Qian C, Wang C, Zhao M, Liu Y, et al. Cofilin-1 and phosphoglycerate kinase 1 as promising indicators for glioma radiosensibility and prognosis. Oncotarget. 2017;8(33):55073-83. DOI: 10.18632/oncotarget.1902510.18632/oncotarget.19025558964228903403 Search in Google Scholar

13. Zhao J, Li D, Fang L. MiR-128-3p suppresses breast cancer cellular progression via targeting LIMK1. Biomed Pharmacother. 2019;115:108947. DOI: 10.1016/j.biopha.2019.10894710.1016/j.biopha.2019.10894731078043 Search in Google Scholar

14. Wang L, Xiong L, Wu Z, Miao X, Liu Z, Li D, et al. Expression of UGP2 and CFL1 expression levels in benign and malignant pancreatic lesions and their clinicopathological significance. World J Surg Oncol. 2018;6(1):11. DOI: 10.1186/s12957-018-1316-710.1186/s12957-018-1316-7577411029347944 Search in Google Scholar

15. Tsai CH, Lin LT, Wang CY, Chiu YW, Chou YT, Chiu SJ, et al. Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochim Biophys Acta. 2015;1852(5):851-61. DOI: 10.1016/j.bbadis.2015.01.00710.1016/j.bbadis.2015.01.00725597880 Search in Google Scholar

16. Mousavi S, Safaralizadeh R, Hosseinpour-Feizi M, Azimzadeh-Isfanjani A, Hashemzadeh S. Study of cofilin 1 gene expression in colorectal cancer. J Gastrointest Oncol. 2018;9(5):791-6. DOI: 10.21037/jgo.2018.05.1710.21037/jgo.2018.05.17621997130505577 Search in Google Scholar

17. Wang L, Buckley AF, Spurney RF. Regulation of cofilin phosphorylation in glomerular podocytes by testis specific kinase 1 (TESK1). Sci Rep. 2018;8(1):12286. DOI: 10.1038/s41598-018-30115-310.1038/s41598-018-30115-3609584930115939 Search in Google Scholar

eISSN:
2284-5623
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie, Humanbiologie, Mikrobiologie und Virologie