1. bookVolumen 30 (2022): Heft 2 (April 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2284-5623
Erstveröffentlichung
08 Aug 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Proposal of a prediction model for prognosis of patients with acute myocardial infarction after percutaneous coronary intervention based on galectin-3 and soluble growth stimulating expressed gene 2 levels

Online veröffentlicht: 09 May 2022
Volumen & Heft: Volumen 30 (2022) - Heft 2 (April 2022)
Seitenbereich: 141 - 149
Eingereicht: 29 Nov 2021
Akzeptiert: 09 Apr 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2284-5623
Erstveröffentlichung
08 Aug 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Background: To study the correlations of serum galectin-3 (Gal-3) and soluble growth stimulating expressed gene 2 (sST2) levels with prognosis of patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI).

Methods: A total of 112 patients diagnosed from August 2015 to October 2017 were selected. They were followed up for 3 years. Based on major adverse cardiovascular events (MACEs) during follow-up, they were divided into MACE and non-MACE groups. Multivariate logistic regression analysis was performed to explore the independent risk factors for MACEs. A nomogram model was established using the factors and validated. The optimal cut-off values of Gal-3 and sST2 levels were determined by receiver operating characteristic curves. Kaplan-Meier method was used for survival analysis.

Results: MACEs occurred in 78 patients during follow-up. Patients in the MACE group were more often hypertensive, had higher total cholesterol, uric acid, sST2 and Gal-3, and lower left ventricular ejection fraction (LVEF) (P<0.05). CK-MB, sST2, Gal-3 and LVEF were the independent risk factors for MACEs (P<0.05). The nomogram model established with these factors had high accuracy for predicting overall survival, and its concordance index (C-index) was 0.768 (95% confidence interval: 0.692-0.865). The prognosis of the patients with Gal-3 ≥12.57 μg/ mL and sST2 ≥18.56 ng/mL was poorer 3 years after PCI.

Conclusions: The levels of serum Gal-3 and sST2 are the independent risk factors for MACEs in AMI patients following PCI, with high prognostic value.

1. Ma LY, Chen WW, Gao RL, Liu LS, Zhu ML, Wang YJ, et al. China cardiovascular diseases report 2018: an updated summary. J Geriatr Cardiol. 2020;17(1):1-8. Search in Google Scholar

2. Choo EH, Kim PJ, Chang K, Ahn Y, Jeon DS, Lee JM, et al. The impact of no-reflow phenomena after primary percutaneous coronary intervention: a time-dependent analysis of mortality. Coron Artery Dis. 2014 Aug;25(5):392-8. DOI: 10.1097/MCA.000000000000010810.1097/MCA.000000000000010824625688 Search in Google Scholar

3. Monassier JP. Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part I: Basic considerations. Arch Cardiovasc Dis. 2008;101(7-8):491-500. DOI: 10.1016/j.acvd.2008.06.01410.1016/j.acvd.2008.06.01418848692 Search in Google Scholar

4. Hernandez-Resendiz S, Chinda K, Ong SB, Cabrera-Fuentes H, Zazueta C, Hausenloy DJ. The role of redox dysregulation in the inflammatory response to acute myocardial ischaemia-reperfusion injury - adding fuel to the fire. Curr Med Chem. 2017;25(11):1275-93. DOI: 10.2174/092986732466617032910061910.2174/092986732466617032910061928356034 Search in Google Scholar

5. Weir RA, Petrie CJ, Murphy CA, Clements S, Steedman T, Miller AM, et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ Heart Fail. 2013;6(3):492-8. DOI: 10.1161/CIRCHEART-FAILURE.112.000146 Search in Google Scholar

6. Miller AM, Liew FY. The IL-33/ST2 pathway-A new therapeutic target in cardiovascular disease. Pharmacol Ther. 2011;131(2):179-86. DOI: 10.1016/j. pharmthera.2011.02.005 Search in Google Scholar

7. Zhang R, Zhang Y, An T, Guo X, Yin S, Wang Y, et al. Prognostic value of sST2 and galectin-3 for death relative to renal function in patients hospitalized for heart failure. Biomark Med. 2015;9(5):433-41. DOI: 10.2217/bmm.15.1210.2217/bmm.15.1225985174 Search in Google Scholar

8. Weir RA, Miller AM, Murphy GE, Clements S, Steed-man T, Connell JM, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243-50. DOI: 10.1016/j. jacc.2009.08.047 Search in Google Scholar

9. Chinese Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. [2019 Chinese Society of Cardiology (CSC) guidelines for the diagnosis and management of patients with ST-segment elevation myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi. 2019;47(10):766-83. Search in Google Scholar

10. World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consulation; WHO: Geneva, Switzerland, 2006. Search in Google Scholar

11. Jespersen L, Hvelplund A, Abildstrøm SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734-44. DOI: 10.1093/eurheartj/ehr33110.1093/eurheartj/ehr33121911339 Search in Google Scholar

12. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2017;15(3):203-14. DOI: 10.1038/nrcardio.2017.16110.1038/nrcardio.2017.16129143812 Search in Google Scholar

13. Luger D, Lipinski MJ, Westman PC, Glover DK, Dimastromatteo J, Frias JC, et al. Intravenously Delivered Mesenchymal Stem Cells: Systemic Anti-Inflammatory Effects Improve Left Ventricular Dysfunction in Acute Myocardial Infarction and Ischemic Cardiomyopathy. Circ Res. 2017;120(10):1598-613. DOI: 10.1161/CIRCRESAHA.117.31059910.1161/CIRCRESAHA.117.31059928232595 Search in Google Scholar

14. Lu H, Liu Y, Wang D, Wang L, Zhou H, Xu G, et al. Galectin-3 regulates metastatic capabilities and chemo-therapy sensitivity in epithelial ovarian carcinoma via NF-κB pathway. Tumour Bio. 2016;37(8):11469-77. DOI: 10.1007/s13277-016-5004-310.1007/s13277-016-5004-327012551 Search in Google Scholar

15. Luo R, Sun X, Shen F, Hong B, Wang Z. Effects of High-Dose Rosuvastatin on Ventricular Remodelling and Cardiac Function in ST-Segment Elevation Myocardial Infarction. Drug Des Devel The. 2020;14(2):3891-8. DOI: 10.2147/DDDT.S25494810.2147/DDDT.S254948752015233061295 Search in Google Scholar

16. Arora G, Bittner V. Chest pain characteristics and gender in the early diagnosis of acute myocardial infarction. Curr Cardiol Rep. 2015;17(2):5. DOI: 10.1007/s11886-014-0557-510.1007/s11886-014-0557-525618302 Search in Google Scholar

17. Binas D, Daniel H, Richter A, Ruppert V, Schlüter KD, Schieffer B, et al. The prognostic value of sST2 and galectin-3 considering different aetiologies in non-ischaemic heart failure. Open Heart. 2018;5(1):e000750. DOI: 10.1136/openhrt-2017-00075010.1136/openhrt-2017-000750584540429531765 Search in Google Scholar

18. Rivera-Caravaca JM, Teruel-Montoya R, Roldán V, Cifuentes-Riquelme R, Crespo-Matas JA, de Los Reyes-García AM, et al. Pilot Study on the Role of Circulating miRNAs for the Improvement of the Predictive Ability of the 2MACE Score in Patients with Atrial Fibrillation. J Clin Med. 2020;9(11):3645. DOI: 10.3390/jcm911364510.3390/jcm9113645769812433198388 Search in Google Scholar

19. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev 2009;230(1):160-71. DOI: 10.1111/j.1600-065X.2009.00794.x10.1111/j.1600-065X.2009.00794.x19594635 Search in Google Scholar

20. Lupu A, Lupu S, Agoston-Coldea L. Is galectin-3 a promoter of ventricular dysfunction? Rev Romana Med Lab. 2018;26(1):21-36. DOI: 10.2478/rrlm-2018-000110.2478/rrlm-2018-0001 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo