1. bookVolumen 22 (2014): Heft 3 (September 2014)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2284-5623
Erstveröffentlichung
08 Aug 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Determination of the phosphorylated neurofilament subunit NF-H (pNF-H) in cerebro-spinal fluid as biomarker in acute traumatic spinal cord injuries / Dozarea neurofilamentelor fosforilate (subunitatea pNF-H) ȋn LCR ca biomarker ȋn traumatismul vertebro-medular acut

Online veröffentlicht: 08 Oct 2014
Volumen & Heft: Volumen 22 (2014) - Heft 3 (September 2014)
Seitenbereich: 377 - 386
Eingereicht: 09 Jan 2014
Akzeptiert: 07 Aug 2014
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2284-5623
Erstveröffentlichung
08 Aug 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Study objective. The objective of this study was to measure the phosphorylated neurofilament subunit NF-H (pNF-H) in cerebro-spinal fluid of patients with spinal cord injury and to determine the correlation between the pNF-H levels and the severity of the injury. Materials and methods. The study included 15 subjects with acute traumatic spinal cord injury: eight patients with complete spinal cord injury (SCI) and seven patients with incomplete SCI. All patients were classified according to the American Spinal Injury Association impairment scale (ASIA) and all patients underwent surgery during the first 24 hours (decompression, stabilization). We measured daily the heavy phosphorylated neurofilament subunit (pNF-H) concentration by sandwich ELISA test in CSF in all patients and we correlated the values of pNF-H with the clinical evolution. Results. For all patients with SCI pNF-H was detectable in CSF samples and the values were different in the cases of complete SCI toward the cases of incomplete SCI and the cerebro-spinal pNF-H level was more elevated in cases of complete SCI. The level of CSF pNF-H was ten to a hundred times higher in complete SCI than the level of CSF pNF-H in cases with incomplete SCI, where the level of this biomarker was close to normal. The patients with a favorable neurological evolution after treatment had a specific pattern of daily values of pNF-H: a sudden increase up to a maximum value then a progressive decrease until normal. The maximum values were different in each case, from 10 times up to 170 times higher than the normal. Conclusion. The phosphorylated form of the high-molecular-weight neurofilament subunit NF-H (pNF-H) in cerebro-spinal fluid can be a specific biomarker for spinal cord injury and it can distinguish the severity of SCI. pNF-H is a predictive biomarker because of its values pattern can show the reducing or stopping of the secondary lesion and the favorable result.

Keywords

Cuvinte cheie

1. Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord. 2005 Mar;43(3):134-61. DOI: 10.1038/sj.sc.310171510.1038/sj.sc.3101715Search in Google Scholar

2. Park E, Velumian AA, Fehlings MG. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. Journal of Neurotrauma. 2004 Jun;21(6):754-74. DOI: 10.1089/089771504126964110.1089/0897715041269641Search in Google Scholar

3. Hawryluk GW, Rowland J, Kwon BK, Fehlings MG. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurgical Focus 2008;25(5):E14. DOI: 10.3171/FOC.2008.25.11.E1410.3171/FOC.2008.25.11.E14Search in Google Scholar

4. Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH,Ditunno JF, et al. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord. 2007 Mar;45(3):206-21. DOI: 10.1038/sj.sc.310200810.1038/sj.sc.3102008Search in Google Scholar

5. Houle JD, Tessler A. Repair of chronic spinal cord injury. Exp Neurol. 2003 Aug; 182(2): 247-60. DOI: 10.1016/S0014-4886(03)00029-310.1016/S0014-4886(03)00029-3Search in Google Scholar

6. Lubieniecka JM, Streijger F, Lee JHT, Stoynov N, Liu J, et al. Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats. PLoS ONE. 2011 Apr 29;6(4):e19247. DOI: 10.1371/journal.pone.001924710.1371/journal.pone.0019247Search in Google Scholar

7. de Vargas Ferreira VM, Varoto R, Azevedo Cacho ÊW, Cliquet A Jr. Relationship between function, strength and electromyography of upper extremities of persons with tetraplegia. Spinal Cord. 2012 Jan;50(1):28-32. DOI: 10.1038/sc.2011.9510.1038/sc.2011.95Search in Google Scholar

8. Freund P, Weiskopf N, Ashburner J, Wolf K, Sutter R, Altmann DR, et al. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 2013 Sep;12(9):873-81. DOI: 10.1016/S1474-4422(13)70146-710.1016/S1474-4422(13)70146-7Search in Google Scholar

9. Yagi M, Ninomiya K, Kihara M, Horiuchi Y. Longterm surgical outcome and risk factors in patients with cervical myelopathy and a change in signal intensity of intramedullary spinal cord on Magnetic Resonance imaging. J Neurosurg Spine. 2010 Jan;12(1):59-65. DOI: 10.3171/2009.5.SPINE0894010.3171/2009.5.SPINE0894020043766Search in Google Scholar

10. Lammertse D, Dungan D, Dreisbach J, Falci S, Flanders A, Marino R, et al. Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med. 2007;30(3):205-14.10.1080/10790268.2007.11753928203196117684886Search in Google Scholar

11. Mercier E, Boutin A, Lauzier F, Fergusson DA, Simard JF, Zarychanski R, et al. Predictive value of S-100β protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta- analysis. BMJ. 2013 Apr 4;346:f1757.10.1136/bmj.f175723558282Search in Google Scholar

12. Cao F, Yang XF, Liu WG, Hu WW, Li G, Zheng XJ et al. Elevation of neuron-specific enolase and S-100beta protein level in experimental acute spinal cord injury. J Clin Neurosci. 2008 May;15(5):541-4. DOI: 10.1016/j. jocn.2007.05.014Search in Google Scholar

13. Pouw MH, Hosman AJ, van Middendorp JJ, Verbeek MM, Vos PE, van de Meent H. Biomarkers in spinal cord injury. Spinal Cord. 2009 Jul;47(7):519-25. DOI: 10.1038/sc.2008.17610.1038/sc.2008.17619153591Search in Google Scholar

14. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma. 2010 Apr;27(4):669-82. DOI: 10.1089/neu.2009.108010.1089/neu.2009.108020038240Search in Google Scholar

15. Kamphuis W, Mamber C, Moeton M, Kooijman L, Sluijs JA, Jansen AH, et al. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One. 2012 Aug;7(8):e42823. DOI: 10.1371/journal. pone.0042823Search in Google Scholar

16. Maas MB, Furie KL. Molecular biomarkers in stroke diagnosis and prognosis. Biomark Med. 2009 Aug 1;3(4):363-83. DOI: 10.2217/bmm.09.3010.2217/bmm.09.30277186220160867Search in Google Scholar

17. Shinozaki K, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Abe R, et al. S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: a systematic review. Crit Care. 2009 Jul;13(4):R121. DOI: 10.1186/cc797310.1186/cc7973275017019624826Search in Google Scholar

18. Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S et al. Hyperphosphory-lated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun. 2005 Nov 4;336(4):1268-77. DOI: 10.1016/j.bbrc.2005.08.25210.1016/j.bbrc.2005.08.25216176808Search in Google Scholar

19. Ueno T, Ohori Y, Ito J, Hoshikawa S, Yamamoto S, Nakamura K et al. Hyperphosphory-lated neurofilament NF-H as a biomarker of the efficacy of minocycline therapy for spinal cord injury. Spinal Cord. 2011 Mar;49(3):333-6. DOI: 10.1038/sc.2010.11610.1038/sc.2010.11620805831Search in Google Scholar

20. Boylan KB, Glass JD, Crook JE, Yang C, Thomas CS, Desaro P, et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013 Apr;84(4):467-72. DOI: 10.1136/jnnp-2012-30376810.1136/jnnp-2012-30376823117489Search in Google Scholar

21. Hayakawa K, Okazaki R, Ishii K, Ueno T, Izawa N, Y Tanaka, et al. Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord. 2012 Jul;50(7):493-6. DOI: 10.1038/sc.2011.18410.1038/sc.2011.18422270191Search in Google Scholar

22. Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. Journal of the Neurological Sciences 2005 Jun 15;233(1-2):183-98. DOI: 10.1016/j.jns.2005.03.01510.1016/j.jns.2005.03.01515896809Search in Google Scholar

23. Dileonardi AM, Huh JW, Raghupathi R. Differential effects of FK506 on structural and functional axonal deficits after diffuse brain injury in the immature rat. J Neuropathol Exp Neurol. 2012 Nov;71(11):959-72. DOI: 10.1097/NEN.0b013e31826f587610.1097/NEN.0b013e31826f5876349506023095847Search in Google Scholar

24. Lee JY, Kim BJ, Sim G, Kim GT, Kang D, Jung JH, et al. Spinal cord injury markedly altered protein expression patterns in the affected rat urinary bladder during healing stages. J Korean Med Sci. 2011 Jun;26(6):814-23. DOI: 10.3346/jkms.2011.26.6.81410.3346/jkms.2011.26.6.814310287821655070Search in Google Scholar

25. Pouw MH, Kwon BK, Verbeek MM, Vos PE, van Kampen A, Fisher CG, et al. Structural biomarkers in the cerebrospinal fluid within 24h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord. 2014 Jun;52(6):428-33. DOI: 10.1038/ sc.2014.2610.1038/sc.2014.2624710150Search in Google Scholar

26. Petzold A, Shaw G. Comparison of two ELISA methods for measuring levels of the phosphorylated neurofilament heavy chain. J of Immunological Methods. 2007 Jan 30;319(1-2):34-40. DOI: 10.1016/j. jim.2006.09.021Search in Google Scholar

27. Guez M, Hildingsson C, Rosengren L, Karlsson K, Toolanen G. Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. J Neurotrauma. 2003 Sep;20(9):853-8. DOI: 10.1089/08977150332238578210.1089/08977150332238578214577863Search in Google Scholar

28. Shiiya N, Kunihara T, Miyatake T, Matsuzaki K, Yasuda K. Tau protein in the cerebro-spinal fluid is a marker of brain injury after aortic surgery. Annals of Thoracic Surgery. 2004 Jun;77(6):2034-8. DOI: 10.1016/j.athoracsur. 2003.12.057Search in Google Scholar

29. Shen S, Loo RR, Wanner IB, Loo JA. Addressing the needs of traumatic brain injury with clinical proteomics. Clin Proteomics. 2014 Mar 28;11(1):11. DOI: 10.1186/1559-0275-11-1110.1186/1559-0275-11-11397636024678615Search in Google Scholar

30. Kiechle K, Bazarian JJ, Merchant-Borna K, Stoecklein V, Rozen E, Blyth B, et al. Subject-specific increases in serum S-100B distinguish sports-related concussion from sports-related exertion. PLoS One. 2014 Jan 8;9(1):e84977. DOI: 10.1371/journal.pone.0084977 10.1371/journal.pone.0084977388576524416325Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo