Zitieren

[1] SODHA, A. B., TIPRE, D. R., DAVE, S. R. 2020. Optimisation of biohydrometallurgical batch reactor process for copper extraction and recovery from non-pulverized waste printed circuit boards. Hydrometallurgy, 191, 1-9. ISSN 0304386X.10.1016/j.hydromet.2019.105170 Search in Google Scholar

[2] FORTI, V., BALDÉ, C. P., KUEHR, R. 2018. E-waste Statistics: Guidelines on classification, reporting and indicators. 2nd edition. Bonn: United Nations University, ViE – SCYCLE, Bonn, Germany. 2018. 37 p. ISBN 978-92-808-9067-9. Search in Google Scholar

[3] NING, C., LIN, C. S. K., HUI, D. C. W., McKAY, G. 2017. Waste Printed Circuit Board (PCB) Recycling Techniques. Top. Curr. Chem., 375(2), 1–36. ISSN 03401022. Search in Google Scholar

[4] BALDÉ, C. P., FORTI, V., GRAY, V., KUEHR, R., STEGMANN, P. 2017. The global e-waste monitor - 2017. Bonn/Geneva/Vienna: United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna, 2017. 116 p. ISBN 978-92-808-9054-9. Search in Google Scholar

[5] CUI. J., ZHANG, L. 2008. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater., 158(2–3), 228–256. ISSN 03043894. Search in Google Scholar

[6] ILYAS, S., LEE, J., CHI, R. 2013. Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy, 131–132, 138–143. ISSN 0304-386X.10.1016/j.hydromet.2012.11.010 Search in Google Scholar

[7] ARSHADI, M., MOUSAVI, S. M. 2014. Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: Statistical evaluation and optimization. Bioresour. Technol., 174, 233–242. ISSN 18732976.10.1016/j.biortech.2014.09.14025463804 Search in Google Scholar

[8] AKBARI, S., AHMADI, A. 2019. Recovery of copper from a mixture of printed circuit boards (PCBs) and sulphidic tailings using bioleaching and solvent extraction processes. Chem. Eng. Process. - Process Intensif., 142, 1-8. ISSN 02552701. Search in Google Scholar

[9] ARSHADI M., YAGHMAEI, S. 2020. Advances in bioleaching of copper and nickel from electronic waste using Acidithiobacillus ferrooxidans : evaluating daily pH adjustment. Chem. Pap., 74, 2211–2227. ISSN 1336-9075.10.1007/s11696-020-01055-y Search in Google Scholar

[10] AN, J. 2021. Characteristics of metals leached from waste printed circuit boards using acidithiobacillus ferrooxidans. Minerals, 11(2), 1–8. ISSN 2075163X.10.3390/min11020224 Search in Google Scholar

[11] KANAUJIA, K., HAIT, S. 2021. Improved Sequential Approachfor Hybrid Bioleaching of Metals from E-Waste. In: S. Kumar et al. Sustainability in Environmental Engineering and Science. Eds. Springer Singapore, 2021. pp. 113–120. ISBN 9789811568879. Search in Google Scholar

[12] PRIYA, A., HAIT, S. 2020. Biometallurgical recovery of metals from waste printed circuit boards using pure and mixed strains of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum. Process Saf. Environ. Prot., 143, 262–272. ISSN 0957-5820. Search in Google Scholar

[13] PRIYA, A. HAIT, S. 2017. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ. Sci. Pollut. Res., 24(8), 6989–7008. ISSN 16147499. Search in Google Scholar

[14] BANIASADI, M., VAKILCHAP, F., BAHALOO-HOREH, N., MOUSAVI, S. M., FARNAUD, S. 2019. Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. J. Ind. Eng. Chem., 76, 75–90. ISSN 1226-086X.10.1016/j.jiec.2019.03.047 Search in Google Scholar

[15] HUBAU, A., MINIER, M., CHAGNES, A., JOULIAN, C., SILVENTE, C., GUEZENNEC, A. G. 2020. Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Sep. Purif. Technol., 238, 1-16. ISSN 18733794. Search in Google Scholar

[16] AWASTHI, A. K., HASAN, M. et al. 2019. Environmentally sound system for E-waste: Biotechnological perspectives. Curr. Res. Biotechnol., 1, 58–64. ISSN 2590-2628. Search in Google Scholar

[17] MRÁŽIKOVÁ, A., KADUKOVÁ, J., MARCINČÁKOVÁ, R. et al. 2016. The Effect of Specific Conditions on Cu, Ni, Zn and Al Recovery from PCBS Waste Using Acidophilic Bacterial Strains. Arch. Metall. Mater., 61(1), 261–264. ISSN 1733-3490. Search in Google Scholar

[18] CHEN, S., YANG, Y., LIU, C., DONG, F., LIU, B. 2015. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere, 141, 162–168. ISSN 18791298. Search in Google Scholar

[19] KARWOWSKA, E., WOJTKOWSKA, M., ANDRZEJEWSKA, D. 2015. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria. J. Hazard. Mater., 299, 35–41. ISSN 18733336.10.1016/j.jhazmat.2015.06.00626073519 Search in Google Scholar

[20] LIANG, G., MO, Y., ZHOU, Q. 2010. Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme Microb. Technol., 47(7), 322–326. ISSN 01410229. Search in Google Scholar

[21] MIKODA, B., POTYSZ, A., KMIECIK, E. 2019. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. J. Environ. Manage., 236, 436–445. ISSN 10958630. Search in Google Scholar

[22] PATHAK, A., SRICHANDAN, H., KIM, D. J. 2019. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment. J. Environ. Manage., 242, 372–383. ISSN 10958630.10.1016/j.jenvman.2019.04.08131059950 Search in Google Scholar

[23] MAHMOUD, A., CÉZAC, P., HOADLEY, A. F. A., CONTAMINE, F., D´HUGUES, P. 2017. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int. Biodeterior. Biodegrad., 119, 118–146. ISSN 09648305. Search in Google Scholar

[24] PANT, D., DHIMAN, V. 2020. An overview on environmental pollution caused by heavy metals released from e - waste and their bioleaching. In: Advances in Environmental Pollution Management: Wastewater Impacts and Treatment Technologies, 1st ed. P. Kumar, V., Kamboj, N., Payum, T., Singh, J. and Kumar, Ed. pp. 41–53. ISBN 978-81-942017-4-8. Search in Google Scholar

[25] VALIX, M. 2017. Bioleaching of Electronic Waste: Milestones and Challenges. In: Current Developments in Biotechnology and Bioengineering: Solid Waste Management. Elsevier B.V. 2017. 504 p. ISBN 978-0-444-63664-5. Search in Google Scholar

[26] SILVAS, F. P. C., ESPINOSA, D. C. R., TENÓRIO, J. A. S. 2015. Bioleaching. In: Electronic Waste: Recycling Techniques, H. M. Veit and A. M. Bernades, Eds. Springer International Publishing Switzerland. 2015, 159 p. ISBN 9783319157146. Search in Google Scholar

[27] ZHAO, F. WANG, S. 2019. Bioleaching of electronic waste using extreme acidophiles. In: Electronic Waste Management and Treatment Technology. Elsevier Inc. 2019. 363 p. ISBN 9780128161906.10.1016/B978-0-12-816190-6.00007-8 Search in Google Scholar

[28] Wang, S., Zheng, Y., Yan, W., Chen, L., Mahadevan, G. D., Zhao, F. 2016. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. J. Hazard. Mater., 320, 393–400. ISSN 18733336. Search in Google Scholar

[29] BRYAN, C. G., WATKIN, E. L., MCCREDDEN, T. J., WONG, Z. R., HARRISON, S. T. L., KAKSONEN, A. H. 2015. The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy, 152, 33–43. ISSN 0304386X.10.1016/j.hydromet.2014.12.004 Search in Google Scholar

[30] BRANDL, H., BOSSHARD, R., WEGMANN, M. 2001. Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59, 319–326. ISSN 15724409.10.1016/S0304-386X(00)00188-2 Search in Google Scholar

[31] IJADI BAJESTANI, M., MOUSAVI, S. M., SHOJAOSADATI, S. A. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization. Separation and Purification Technology, 132, 309–316. ISSN 13835866.10.1016/j.seppur.2014.05.023 Search in Google Scholar

[32] MRAŽÍKOVÁ, A., MARCINČÁKOVÁ, R., KADUKOVÁ, J., VELGOSOVÁ, O. 2013. Influence of bacterial culture to copper bioleaching from printed circuit boards. Inzynieria Mineralna, 14(2), 59–62. ISSN 16404920. Search in Google Scholar

[33] WILLNER, J. 2013. Influence of physical and chemical factors on biological leaching process of copper from printed circuit boards, Metalurgija, 52(2), 189–192. ISSN 05435846. Search in Google Scholar

[34] WILLNER, J. FORNALCZYK, A. 2013. Extraction of metals from electronic waste by bacterial leaching. Environ. Prot. Eng., 39(1), 197–208. ISSN 03248828. Search in Google Scholar

[35] B. NAZARI, E. JORJANI, H. HANI, Z. MANAFI, AND A. RIAHI. 2014. Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria. Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 4, pp. 1152–1160. Search in Google Scholar

[36] JIN-YAN, L., XIU-XIANG, T., PEI, C. 2009. Study of formation of jarosite mediated by Thiobacillus ferrooxidans in 9K medium. Procedia Earth Planet. Sci., 1(1), 706–712. ISSN 18785220. Search in Google Scholar

[37] ILYAS, S., RUAN, C., BHATTI, H. N., GHAURI, M. A., ANWAR, M. A. 2010. Column bioleaching of metals from electronic scrap. Hydrometallurgy, 101(3–4), 135–140. ISSN 0304386X.10.1016/j.hydromet.2009.12.007 Search in Google Scholar

[38] WU, W., LIU, X., ZHANG, X., ZHU, M., TAN, W. 2018. Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresources and Bioprocesses, 5(1), 1-13. ISSN 21974365. Search in Google Scholar

[39] IŞILDAR, A. et al. 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. J. Hazard. Mater., 362, 467–481. ISSN 18792456.10.1016/j.jhazmat.2018.08.05030268020 Search in Google Scholar

[40] WU, H. Y., TING, Y. P. 2006. Metal extraction from municipal solid waste (MSW) incinerator fly ash - Chemical leaching and fungal bioleaching. Enzyme Microb. Technol., 38(6), 839–847. ISSN 01410229. Search in Google Scholar

[41] ABHILASH, TABASSUM, S., GHOSH, A., MESHRAM, P., VAN HULLEBUSCH, E. D. 2021. Microbial Processing of Waste Shredded PCBs for Copper Extraction Cum Separation— Comparing the Efficacy of Bacterial and Fungal Leaching Kinetics and Yields. Metals, 11(2), 1-17. ISSN 20754701.10.3390/met11020317 Search in Google Scholar

[42] MÄKINEN, J., BACHÉR, J., KAARTINEN, T., WAHLSTRÖM, M., SALMINEN, J. 2015. The effect of flotation and parameters for bioleaching of printed circuit boards. Miner. Eng., 75, 26–31. ISSN 08926875. Search in Google Scholar

[43] ZHANG, S., YAN, L., XING, W., CHEN, P., ZHANG, Y., WANG, W. 2018. Acidithiobacillus ferrooxidans and its potential application. Extremophiles, 22(4), 563–579. ISSN 14334909. Search in Google Scholar

[44] ZHU, N., XIANG, Y., ZHANG, T. ET AL. 2011. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. Journal of Hazardous Materials, 192(2), 614–619. ISSN 03043894. Search in Google Scholar

[45] NIE, H., YANG, CH., ZHU, N., WU, P. et al. 2015. Isolation of Acidithiobacillus ferrooxidans strain Z1 and its mechanism of bioleaching copper from waste printed circuit boards. Journal of Chemical Technology and Biotechnology, 90(4), 714–721. ISSN 10974660. Search in Google Scholar

eISSN:
1338-0532
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere