1. bookVolumen 66 (2019): Heft 1 (March 2019)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1854-7400
Erstveröffentlichung
30 Mar 2016
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

New Method of Visibility Network and Statistical Pattern Network Recognition Usage in Terrain Surfaces

Online veröffentlicht: 30 Aug 2019
Volumen & Heft: Volumen 66 (2019) - Heft 1 (March 2019)
Seitenbereich: 13 - 25
Eingereicht: 18 Oct 2018
Akzeptiert: 10 Dec 2018
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1854-7400
Erstveröffentlichung
30 Mar 2016
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] Kowalczyk, A.M. (2015): The use of scale-free networks theory in modeling landscape aesthetic value networks in urban areas. Geodetski vestnik, 59(1), pp. 135–152.10.15292/geodetski-vestnik.2015.01.135-152Search in Google Scholar

[2] Ben-Moshe, B., Hall-Holt, O., Katz, M.J., Mitchell, J.S.B. (2004): Computing the visibility graph of points within apolygon. SCG’04 Proc. of the 20th Annual Symposium on Computational Geometry: Brooklyn, New York, USA; pp. 27–35.10.1145/997817.997825Search in Google Scholar

[3] Overmars, M.H., Welzl, E. (1998): New methods for constructing visibility graphs. In: Proc. 4th Annu. ACM Symp. Computational Geometry. Urbana: Illinois; pp. 164–171.Search in Google Scholar

[4] Stempien, D.C. (2002): Terrain models as battlefield visualization training tools. In: Military Intelligence Professional Bulletin. 28(4). Huachuca City. Arizona; pp. 33–35.Search in Google Scholar

[5] Wilson, J.P., Gallant, J.C. (2000): Digital Terrain Analysis. In: Wilson. J.P., Gallant, J.C. (ed.). Terrain Analysis: Principles and Applications, Chapter 1. New York: Wiley; pp. 1–27.Search in Google Scholar

[6] Haitov, B.U. (2014a): Geometric modeling of the relief for the problems of choosing the optimal design surface and water disposal//Young scientist: Monthly scientific journal. – Kazan, 4(63), pp. 292–194.Search in Google Scholar

[7] Haitov, B.U. (2014b): On the construction of structural relief lines. Young scientist: Monthly scientific journal. – Kazan, 4(63), pp. 289–291.Search in Google Scholar

[8] Boeing, G. (2016): Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems, 4(4), pp. 37–54.10.3390/systems4040037Search in Google Scholar

[9] Bridge, J.P., Holden, S.B., Paulson, L.C. (2014): Machine learning for first-order theorem proving. Journal of automated reasoning, 53(2), pp. 141–172.10.1007/s10817-014-9301-5Search in Google Scholar

[10] Marjetič, A., Kregar, K. (2016): Definition of appropriate geodetic datum using robust statistical. Geodetski vestnik, 60(2), pp. 212–226.10.15292/geodetski-vestnik.2016.02.212-226Search in Google Scholar

[11] Bishop, C.M. (2006): Pattern Recognition and Machine Learning. New York: Springer-Verlag, 738 p.Search in Google Scholar

[12] Babič, M. (2014): Analiza kaljenih materialov s pomočjo fraktalne geometrije. Ph. D. Thesis. Maribor: University of Maribor 2014; 167 p.Search in Google Scholar

[13] De Wouter, N., Mrvar, A., Batagelj, V. (2005): Exploratory Social Network Analysis with Pajek. New York: Cambridge University Press; 334 p.Search in Google Scholar

[14] Babič, M., Kokol, P., Guid, N., Panjan, P. (2014): A new method for estimating the Hurst exponent H for 3D objects = Nova metoda za ocenjevanje Hurstovega eksponenta H za 3D-objekte. Materiali in tehnologije, 48(2), pp. 203–208.Search in Google Scholar

[15] Lewoniewski, W., Węcel, K., Abramowicz, W. (2016): Quality and Importance of Wikipedia Articles in Different Languages. Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, 639, pp. 613–624.10.1007/978-3-319-46254-7_50Search in Google Scholar

[16] Malkov, Y., Ponomarenko, A., Krylov, V., Logvinov, A. (2014): Approximate nearest neighbor algorithm based on navigable small world graphs. Information Systems, 45, pp. 61–68.10.1016/j.is.2013.10.006Search in Google Scholar

[17] Wenzel, F., Galy-Fajou, T., Deutsch, M., Kloft, M. (2017): Bayesian Nonlinear Support Vector Machines for Big Data (PDF). Machine Learning and Knowledge Discovery in Databases (ECML PKDD). Archived (PDF) from the original on 2017-08-30.Search in Google Scholar

[18] Roering, J.J., Mackey, B.H., Marshall, J.A., Sweeney, K.E., Deligne, N.I., Booth, A.M., Handwerger, A.L., Cerovski-Darriau, C. (2013): “You are HERE”: Connecting the dots with airborne lidar for geomorphic fieldwork. Geomorphology, 200, pp. 172–183.10.1016/j.geomorph.2013.04.009Search in Google Scholar

[19] Eitel, J.U.H., Höfle, B., Vierling, L.A. Abellán, A., Asner, G.P., Deems, J.S., Glennie, C.L., Joerg, P.C., LeWinter A.L., Magney, T.S., Mandlburger, G., Morton, D.C., Müller, J., Vierling, K.T. (2016): Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 186, pp. 372–392.10.1016/j.rse.2016.08.018Search in Google Scholar

[20] Lo Ren, G., Fuller, I.C., Sofia, G., Tarolli, P. (2018): High-resolution mapping of Manawatu palaeochannels. New Zealand Geographer, 74(2), pp.77–91.Search in Google Scholar

[21] Tasse, F.P., Gain, J., Marais, P. (2012): Enhanced Texture-Based Terrain Synthesis on Graphics Hardware. Computer Graphics Forum, 31(6), pp. 1959–1972.10.1111/j.1467-8659.2012.03076.xSearch in Google Scholar

[22] Booth, A.M., Roewring, J.J., Perron, J.T. (2009): Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109, pp.132–147.10.1016/j.geomorph.2009.02.027Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo