1. bookVolumen 65 (2018): Heft 4 (December 2018)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1854-7400
Erstveröffentlichung
30 Mar 2016
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Decarburization of the Carbon Steel C45 During Annealing in Air

Online veröffentlicht: 31 May 2019
Volumen & Heft: Volumen 65 (2018) - Heft 4 (December 2018)
Seitenbereich: 167 - 178
Eingereicht: 17 May 2018
Akzeptiert: 30 Nov 2018
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1854-7400
Erstveröffentlichung
30 Mar 2016
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] Schumann, H. (1983): Metallografie, 12. Auflage. Leibzig: WEB Deutscher Verlag für Grundstoffindustrie, 608 p.Search in Google Scholar

[2] Kveder, A. (1972): Metalurški priročnik (Handbook of Metallurgy), Ljubljana: Tehniška založba Slovenije, 1471 p.Search in Google Scholar

[3] Mardon, C. (1998): The austenitization and decarburization of high silicon spring steel. PhD Thesis, Christchurch: University of Canterbury; 103 p.Search in Google Scholar

[4] Zhang, C.L., Zhou, L.I., Liu, Y.Z. (2013): Surface decarburization characteristics and relation decarburized types and heating temperature of spring steel 60Si2MnA. International Journal of Minerals, Metallurgy, and Materials, 20(8), pp. 720–724.10.1007/s12613-013-0789-1Search in Google Scholar

[5] Liu, Y., Zhang, W., Tong, Q., Wang, L. (2014): Effects of Temperature and Oxygen Concentration on the Characteristics of Decarburization of 55SiCr Spring Steel. ISIJ International, 54(8), pp. 1920–1926.10.2355/isijinternational.54.1920Search in Google Scholar

[6] Zorc, M. (2016): Decarburization of non-alloy medium carbon steel during annealing in an air atmosphere (in Slovenian), Diploma Thesis, Ljubljana: University of Ljubljana, Faculty of Natural sciences and Engineering - Department of Materials and Metallurgy; 41 p.Search in Google Scholar

[7] Mayott, S.W. (2010): Analysis of the Effect of Reduced Oxygen Atmospheres on the Decarburization Depth of 300M Alloy Steel, Master of Science Thesis, New York, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering.Search in Google Scholar

[8] Naumann, F.K. (1976): Das Buch der Schadensfälle. Stuttgart, Germany: Dr. Riederer-Verlag GmbH, 481 p.Search in Google Scholar

[9] Vander Voort, G.F. (2015): Understanding and Measuring Decarburization. Advanced materials & Processes, 173(2), pp. 22–27.Search in Google Scholar

[10] Jaason, K., Peetsalu, P., Saarna, M., Kulu, P., Beilmann, J. (2016): Decarburization Effect on Hardened Strip Fastening Components. Materials Science, 22(1), pp.148–152.Search in Google Scholar

[11] Vodopivec, F. (2002). Kovine in zlitine (Metals and Alloys), Ljubljana: Institute of Metals and Technology, 474 p.Search in Google Scholar

[12] Zorc, B., Nagode, A., Kosec, B., Kosec, L. (2013): Elevator chain wheel shaft break analysis. Case Studies in Engineering Failure Analysis, 1(2), pp. 115–119.10.1016/j.csefa.2013.05.004Search in Google Scholar

[13] Atlas zur Wärmebehandlung der Stähle auf CD-ROM (2009); Düsseldorf: Verlag Stahleisen GmbH.Search in Google Scholar

[14] Chen, R.Y., Yuen, W.Y.D. (2003): Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxidation of Metals, 59(5/6), pp. 433–468.10.1023/A:1023685905159Search in Google Scholar

[15] De Cooman, B.C., Speer, J.G. (2011): Fundamentals of Steel Product Physical Metallurgy, Englewood: AIST, 642 p.Search in Google Scholar

[16] Grzesik, Z. (2003): Thermodynamics of Gaseous Corrosion. In ASM Handbook, Vol. 13A - Corrosion: Fundamentals, Testing, and Protection, Cramer, S.D., Covino Jr., B.S. (Eds.), Ohio: ASM International, Materials Park, pp. 90–96.Search in Google Scholar

[17] Billings, G.A. (1966): Oxidation and Decarburization Kinetics of Iron-Carbon Alloys in Carbon Dioxide-Carbon Monoxide Atmosphere, Master of Science Thesis, Hamilton, Ontario: McMaster University; 120 p.Search in Google Scholar

[18] Baud, J., Ferrier, A., Manenc, J., Bénard, J. (1975): The oxidation and decarburizing of Fe-C alloys in air and the influence of relative humidity. Oxidation of Metals, 9(1), pp. 69–97.10.1007/BF00613495Search in Google Scholar

[19] Sebenji, F., Hakl, L., (1980). Corrosion of metals in theory and practice (in Serbian), Belgrade: Tehnička knjiga, 226 p.Search in Google Scholar

[20] Stratton, P.F. (1984): Living with Furnace Atmosphere Contamination. Metal Science and Heat Treatment, 2, pp. 41–48.Search in Google Scholar

[21] Parrish, G. (1999): Carburizing-Microstructures and properties. Ohio: ASM International: Materials Park, 247 p.10.31399/asm.tb.cmp.9781627083379Search in Google Scholar

[22] Mladenović, S., Petrović, M., Rikovski, G. (1975). Handbook of chemical technology, Corrosion and protection of materials (in Serbian), Belgrade: IRO “RAD”, 484 p.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo