1. bookVolumen 9 (2022): Heft 16 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2182-1976
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Flattening the Curve. . . of Spirographs

Online veröffentlicht: 14 Jun 2022
Volumen & Heft: Volumen 9 (2022) - Heft 16 (June 2022)
Seitenbereich: 1 - 20
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2182-1976
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

[Ber14] S. Berendonk. “The Length of Spirographic Curves”. In: The American Mathematical Monthly 121(3) (Mar. 2014), pp. 207–212.10.4169/amer.math.monthly.121.03.207 Search in Google Scholar

[Cav75] W. E. Cavanaugh. “The Spirograph and the Greatest Common Factor”. In: The Mathematics Teacher 68(2) (Feb. 1975), pp. 162–163.10.5951/MT.68.2.0162 Search in Google Scholar

[Flo92] A. Flores. “Mathematical Connections with a Spirograph”. In: The Mathematics Teacher 85(2) (Feb. 1992), pp. 129–137.10.5951/MT.85.2.0129 Search in Google Scholar

[Hal92] L. M. Hall. “Trochoids, Roses, and Thorns-Beyond the Spirograph”. In: The College Mathematics Journal 23(1) (Jan. 1992), pp. 20–35. Search in Google Scholar

[Law13] J. D. Lawrence. A Catalog of Special Plane Curves. United States: Dover Publications, 2013. Search in Google Scholar

[Nas77] D. H. Nash. “Rotary Engine Geometry”. In: Mathematics Magazine 50(2) (Mar. 1977), pp. 87–89.10.1080/0025570X.1977.11976621 Search in Google Scholar

[Öna84] A. Önaç. “Microdot Spirograph”. In: Mathematics in School 13(4) (Sept. 1984), pp. 2–6. Search in Google Scholar

[She15] A. Shell-Gellasch. “The Spirograph and Mathematical Models from 19th-Century Germany”. In: Math Horizons 22(4) (Apr. 2015), pp. 22–25.10.4169/mathhorizons.22.4.22 Search in Google Scholar

[Sim97] A. Simoson. “An Envelope for a Spirograph”. In: The College Mathematics Journal 28(2) (Mar. 1997), pp. 134–139.10.1080/07468342.1997.11973852 Search in Google Scholar

[Wika] Wikipedia. Curvature. Retrieved from Wikipedia, The Free Encyclopedia:https://en.wikipedia.org/wiki/Curvature. Accessed: 2020, March 29. Search in Google Scholar

[Wikb] Wikipedia. Euler’s totient function. Retrieved from Wikipedia, The Free Encyclopedia:https://en.wikipedia.org/w/index.php?title=Euler%27s_totient_function&oldid=1060227676. Accessed: 2021, December 14. Search in Google Scholar

[Wikc] Wikipedia. Peaucellier–Lipkin linkage. Retrieved from Wikipedia, The Free Encyclopedia:https://en.wikipedia.org/wiki/Peaucellier%E2%80%93Lipkin_linkage. Accessed: 2019, December 18. Search in Google Scholar

[Wikd] Wikipedia. Polygram (Geometry). Retrieved from Wikipedia, The Free Encyclopedia:https://en.wikipedia.org/wiki/Polygram_(geometry). Accessed: 2019, December 18. Search in Google Scholar

[Wike] Wikipedia. Trochoid. Retrieved from Wikipedia, The Free Encyclopedia:https://en.wikipedia.org/wiki/Trochoid. Accessed: 2019, November 24. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo