[
Aydöner, C. (2024). Development and application of a GIS tool in the design of surface water quality monitoring networks: A micro-watershed–based approach. Environmental Monitoring and Assessment, 196(10), doi:10.1007/s10661-024-13193-x.
]Search in Google Scholar
[
Bilolikar, D. K., More, A., Gong, A., and Janssen, J. (2023). How to out-perform default random forest regression: choosing hyper-parameters for applications in large-sample hydrology. arXiv preprint arXiv:2305.07136.
]Search in Google Scholar
[
Derzhspozhyvstandart Ukrainy (2007). Dzherela tsentralizovanoho pytnoho vodopostachannia. Hihienichni ta ekolohichni vymohy shchodo yakosti vody i pravila vybyrannia (Centralized drinking water sources. Hygienic and ecological requirements for water quality and sampling rules). Kyiv.
]Search in Google Scholar
[
Jha, D., Das, A., Saravanane, N., Abdul Nazar, A., and Kirubagaran, R. (2010). Sensitivity of GIS-based interpolation techniques in assessing water quality parameters of Port Blair Bay, Andaman. Journal of the Marine Biological Association of India, 52(1):55–61.
]Search in Google Scholar
[
Klymchuk, V. (2019). HIS v ekolohichnomu monitorynhu vodoim Ukrainy (GIS in environmental monitoring of Ukraine’s water bodies). Visnyk ekolohichnoi bezpeky – Bulletin of Environmental Safety, 2:45–58.
]Search in Google Scholar
[
Maliqi, E. and Penev, P. (2019). Spatial Representation Of Surface Water Monitoring And Its Assessment Using Geostatistical And Non-Geostatistical Techniques In GIS. Geodesy and cartography, 45(4):177–189, doi:10.3846/gac.2019.8590.
]Search in Google Scholar
[
Ministerstvo okhorony zdorovia Ukrainy (2010). Derzhavni sanitarni normy ta pravila “Hihienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu” (State sanitary norms and rules “Hygienic requirements for drinking water intended for human consumption”). DSanPiN 2.2.4-171-10.
]Search in Google Scholar
[
Nisansala, K. (2022). Evaluation of Different Interpolation Techniques in GIS for Rainfall Data in Sri Lanka (2013-2018) and Identification of the Validation of the Techniques. Proceedings of International Forestry and Environment Symposium, 26, doi:10.31357/fesympo.v26.5767.
]Search in Google Scholar
[
Oztuna, A. (2023). Environmental Analysis Using Integrated GIS and Spatial Configurations in Israel. Journal of Geographic Information System, 15(02):267–293, doi:10.4236/jgis.2023.152014.
]Search in Google Scholar
[
Pal, D., Saha, S., Mukherjee, A., Sarkar, P., Banerjee, S., and Mukherjee, A. (2025). GIS-Based Modeling for Water Resource Monitoring and Management: A Critical Review, page 537–561. Springer Nature Switzerland, doi:10.1007/978-3-031-62376-9_24.
]Search in Google Scholar
[
Parra, L. (2022). Remote Sensing and GIS in Environmental Monitoring. Applied Sciences, 12(16):8045, doi:10.3390/app12168045.
]Search in Google Scholar
[
Semenchuk, M. R. (2022). Triangulated irregular network interpolation method in spatial analysis. Connectivity, 156(2), doi:10.31673/2412-9070.2022.026269.
]Search in Google Scholar
[
Shukla, B. K., Gupta, L., Parashar, B., Sharma, P. K., Sihag, P., and Shukla, A. K. (2025). Integrative Assessment of Surface Water Contamination Using GIS, WQI, and Machine Learning in Urban–Industrial Confluence Zones Surrounding the National Capital Territory of the Republic of India. Water, 17(7):1076, doi:10.3390/w17071076.
]Search in Google Scholar
[
Tamilenthi, S., Baskaran, R., and Mohan, K. C. (2011). Triangulated Irregular Network (TIN) Model For Water Resource Management For The Sustainable Development Of Kottakarai Aru Water Shed, Tamil Nadu, India. Journal of Environmental Research And Development, 6(2):837–845.
]Search in Google Scholar