[
Aggarwal, S. and Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 149:270–299, doi:10.1016/j.comcom.2019.10.014.
]Search in Google Scholar
[
Alekseev, V. and Talanov, V. (2005). Chapter 3.4. finding the shortest paths in a graph. Graphs. Computation Models. Data structures. Nizhny Novgorod: Publishing House of the Nizhny Novgorod State. University, 236:237.
]Search in Google Scholar
[
Alyassi, R., Khonji, M., Karapetyan, A., Chau, S. C.-K., Elbassioni, K., and Tseng, C.-M. (2023). Autonomous recharging and flight mission planning for battery-operated autonomous drones. IEEE Transactions on Automation Science and Engineering, 20(2):1034–1046, doi:10.1109/tase.2022.3175565.
]Search in Google Scholar
[
Apollo, M., Jakubiak, M., Nistor, S., Lewinska, P., Krawczyk, A., Borowski, L., Specht, M., Krzykowska-Piotrowska, K., Marchel, L., Pęska-Siwik, A., Kardoš, M., and Maciuk, K. (2023). Geodata in science – A review of selected scientific fields. Acta Scientiarum Polonorum Formatio Circumiectus, 22(2):17–40, doi:10.15576/asp.fc/2023.22.2.02.
]Search in Google Scholar
[
ArduPilot Copter (2021a). Copter Documentation, ArduPilot Dev Team. https://ardupilot.org/copter/index.html, accessed 23 june 2024.
]Search in Google Scholar
[
ArduPilot Copter (2021b). Mission Planner Overview, ArduPilot Dev Team. https://ardupilot.org/planner/docs/mission-planneroverview.html.
]Search in Google Scholar
[
Barnawi, A., Kumar, K., Kumar, N., Thakur, N., Alzahrani, B., and Almansour, A. (2023). Unmanned Ariel Vehicle (UAV) path planning for area segmentation in intelligent landmine detection systems. Sensors, 23(16):7264, doi:10.3390/s23167264.
]Search in Google Scholar
[
Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, doi:10.1090/qam/102435.
]Search in Google Scholar
[
Berra, E. F. and Peppa, M. V. (2020). Advances and challenges of UAV SFM MVS photogrammetry and remote sensing: Short review. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W12-2020:267–272, doi:10.5194/isprs-archives-xlii-3-w12-2020-267-2020.
]Search in Google Scholar
[
Budiyono, A. and Higashino, S.-I. (2023). A review of the latest innovations in UAV technology. doi:10.5281/ZENODO.8062292.
]Search in Google Scholar
[
Burrough, P. A., McDonnell, R. A., and Lloyd, C. D. (2015). Principles of geographical information systems. Oxford university press.
]Search in Google Scholar
[
Chintanadilok, J., Patel, S., Zhuang, Y., and Singh, A. (2022). Mission planner: An open-source alternative to commercial flight planning software for Unmanned Aerial Systems: AE576/AE576, 8/2022. EDIS, 2022(4), doi:10.32473/edis-ae576-2022.
]Search in Google Scholar
[
Choi, H. S., Lee, S., Ryu, H., Shim, H., and Ha, C. (2015). Dynamics and simulation of the effects of wind on UAVs and airborne wind measurement. Transactions Of The Japan Society For Aeronautical And Space Sciences, 58(4):187–192, doi:10.2322/tjsass.58.187.
]Search in Google Scholar
[
Cormen, T. H., Leiserson, C., Rivest, R., and Stein, C. (2009). Introduction to Algorithms, Third Edition. Massachusetts London, England.
]Search in Google Scholar
[
Dangermond, J. and Goodchild, M. F. (2019). Building geospatial infrastructure. Geo-spatial Information Science, 23(1):1–9, doi:10.1080/10095020.2019.1698274.
]Search in Google Scholar
[
Didulescu, D., Buciu, C., and Răducanu, D.-G. (2018). Mission planner for GEOINT data acquisition. Journal of Military Technology, 1(1):51–56, doi:10.32754/jmt.2018.1.09.
]Search in Google Scholar
[
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269–271, doi:10.1007/bf01386390.
]Search in Google Scholar
[
EASA (2023). EASA: 20 years of safe aviation. EASA European Aviation Safety Agency, https://www.easa.europa.eu/en/regulations.
]Search in Google Scholar
[
Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., and Schultz, U. P. (2018). A survey of open-source UAV flight controllers and flight simulators. Microprocessors and Microsystems, 61:11–20, doi:10.1016/j.micpro.2018.05.002.
]Search in Google Scholar
[
Ekaso, D., Nex, F., and Kerle, N. (2020). Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing. Geo-spatial Information Science, 23(2):165–181, doi:10.1080/10095020.2019.1710437.
]Search in Google Scholar
[
Elmokadem, T. and Savkin, A. V. (2021). Towards fully autonomous UAVs: A survey. Sensors, 21(18):6223, doi:10.3390/s21186223.
]Search in Google Scholar
[
Elwood, S., Goodchild, M. F., and Sui, D. Z. (2012). Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers, 102(3):571–590, doi:10.1080/00045608.2011.595657.
]Search in Google Scholar
[
Garg, P. K. (2020). Digital land surveying and mapping. New Age International Pvt Ltd.
]Search in Google Scholar
[
GGIM (2015). A guide to the role of Standards in Geospatial Information Management. Prepared cooperatively by the: Open Geospatial Consortium (OGC), The International Organization for Standards (ISO), Technical Committee 211 Geographic information/Geomatics, International Hydrographic Organization (IHO).
]Search in Google Scholar
[
Gómez-López, J. M., Pérez-García, J. L., Mozas-Calvache, A. T., and Delgado-García, J. (2020). Mission flight planning of rpas for photogrammetric studies in complex scenes. ISPRS International Journal of Geo-Information, 9(6):392, doi:10.3390/ijgi9060392.
]Search in Google Scholar
[
Goodchild, M. F. (2005). Geographic Information Systems, pages 107–113. Elsevier, doi:10.1016/b0-12-369398-5/00335-2.
]Search in Google Scholar
[
Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, doi:10.1109/tssc.1968.300136.
]Search in Google Scholar
[
Henderson, I. L. (2022). Aviation safety regulations for unmanned aircraft operations: Perspectives from users. Transport Policy, 125:192–206, doi:10.1016/j.tranpol.2022.06.006.
]Search in Google Scholar
[
Hentati, A. I., Krichen, L., Fourati, M., and Fourati, L. C. (2018). Simulation tools, environments and frameworks for UAV systems performance analysis. In 2018 14th International Wireless Communications and Mobile Computing Conference (IWCMC), pages 1495–1500. IEEE, doi:10.1109/iwcmc.2018.8450505.
]Search in Google Scholar
[
Ho, F., Geraldes, R., Goncalves, A., Rigault, B., Sportich, B., Kubo, D., Cavazza, M., and Prendinger, H. (2022). Decentralized multi-agent path finding for UAV traffic management. IEEE Transactions on Intelligent Transportation Systems, 23(2):997–1008, doi:10.1109/tits.2020.3019397.
]Search in Google Scholar
[
Huawei (2016). Huawei TSMC [advertisement], 2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS).
]Search in Google Scholar
[
Hutsul, T. (2019). Geoinformation multiagent optimization of road transport network development planning (based on the example Chernivtsi Region). Technical report, Kyiv National University of Civil Engineering and Architecture.
]Search in Google Scholar
[
Hutsul, T. and Karpinskyi, Y. (2021). Possibility of applying geoin-formation multiagent optimisation for planning the development of road networks. Reports on Geodesy and Geoinformatics, 112(1):1–8, doi:10.2478/rgg-2021-0002.
]Search in Google Scholar
[
Hutsul, T. and Smirnov, Y. (2017). Comparative accuracy assessment of global DTM and DTM generated from soviet topographic maps for the purposes of road planning. Geodesy and cartography, 43(4):173–181, doi:10.3846/20296991.2017.1412638.
]Search in Google Scholar
[
Hutsul, T., Zhezhera, I., and Tkach, V. (2022). Features of UAV classification and selection methods. Technical Sciences and Technologies, (4(30)):201–212, doi:10.25140/2411-5363-2022-4(30)-201-212.
]Search in Google Scholar
[
Šipoš, D. and Gleich, D. (2020). A lightweight and low-power UAV-borne ground penetrating radar design for landmine detection. Sensors, 20(8):2234, doi:10.3390/s20082234.
]Search in Google Scholar
[
Israel, M., Mende, M., and Keim, S. (2015). UAVRC, a generic MAV flight assistance software. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W4:287–291, doi:10.5194/isprsarchives-xl-1-w4-287-2015.
]Search in Google Scholar
[
Jayaweera, H. M. P. C. and Hanoun, S. (2022). Path planning of Unmanned Aerial Vehicles (UAVs) in windy environments. Drones, 6(5):101, doi:10.3390/drones6050101.
]Search in Google Scholar
[
Karpinskyi, Y. and Lazorenko-Hevel, N. (2018). The methods of geospatial data collection for topographic mapping. Suchasni Dosiahnennia Heodezychnoi Nauky I Vyrobnytstva, I(35):204–211.
]Search in Google Scholar
[
LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, doi:10.1017/cbo9780511546877.
]Search in Google Scholar
[
Levitin, A. (2006). Algoritmy: vvedenie v razrabotku i analiz [introduction to the design and analysis of algorithms]. pages 345–353.
]Search in Google Scholar
[
Lopes Bento, N., Araújo E Silva Ferraz, G., Alexandre Pena Barata, R., Santos Santana, L., Diennevan Souza Barbosa, B., Conti, L., Becciolini, V., and Rossi, G. (2022). Overlap influence in images obtained by an Unmanned Aerial Vehicle on a digital terrain model of altimetric precision. European Journal of Remote Sensing, 55(1), doi:10.1080/22797254.2022.2054028.
]Search in Google Scholar
[
Medvedskyi, Y., Annenkov, A., Adamenko, O., Demianenko, R., and Tcikolenko, E. (2024). Peculiarities of UAV mapping of the territory with a significant elevation differenc. Urban development and spatial planning, (85):391–404, doi:10.32347/2076-815x.2024.85.391-404.
]Search in Google Scholar
[
Meier, K., Hann, R., Skaloud, J., and Garreau, A. (2022). Wind estimation with multirotor UAVs. Atmosphere, 13(4):551, doi:10.3390/atmos13040551.
]Search in Google Scholar
[
Miller, J. A., Minear, P. D., Niessner, A. F., DeLullo, A. M., Geiger, B. R., Long, L. N., and Horn, J. F. (2007). Intelligent unmanned air vehicle flight systems. Journal of Aerospace Computing, Information, and Communication, 4(5):816–835, doi:10.2514/1.26553.
]Search in Google Scholar
[
Moore, E. F. (1959). The shortest path through a maze. In Proc. of the International Symposium on the Theory of Switching, pages 285–292. Harvard University Press.
]Search in Google Scholar
[
Nikolos, I., Valavanis, K., Tsourveloudis, N., and Kostaras, A. (2003). Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 33(6):898–912, doi:10.1109/tsmcb.2002.804370.
]Search in Google Scholar
[
Paredes, J., Álvarez, F., Aguilera, T., and Villadangos, J. (2017). 3D indoor positioning of UAVs with spread spectrum ultrasound and time-of-flight cameras. Sensors, 18(1):89, doi:10.3390/s18010089.
]Search in Google Scholar
[
Ramirez-Atencia, C. and Camacho, D. (2018). Extending QGround-Control for automated mission planning of UAVs. Sensors, 18(7):2339, doi:10.3390/s18072339.
]Search in Google Scholar
[
Ramírez-Atencia, C., Bello-Orgaz, G., R-Moreno, M. D., and Camacho, D. (2014). Branching to Find Feasible Solutions in Unmanned Air Vehicle Mission Planning, pages 286–294. Springer International Publishing, doi:10.1007/978-3-319-10840-7_35.
]Search in Google Scholar
[
Rodríguez-Fernández, V., Menéndez, H. D., and Camacho, D. (2017). A study on performance metrics and clustering methods for analyzing behavior in UAV operations. Journal of Intelligent and Fuzzy Systems, 32(2):1307–1319, doi:10.3233/jifs-169129.
]Search in Google Scholar
[
Rusli, N., Majid, M. R., and Din, A. H. M. (2014). Google Earth’s derived digital elevation model: A comparative assessment with Aster and SRTM data. IOP Conference Series: Earth and Environmental Science, 18:012065, doi:10.1088/1755-1315/18/1/012065.
]Search in Google Scholar
[
Stecz, W. and Gromada, K. (2020). UAV mission planning with SAR application. Sensors, 20(4):1080, doi:10.3390/s20041080.
]Search in Google Scholar
[
Stolaroff, J. K., Samaras, C., O’Neill, E. R., Lubers, A., Mitchell, A. S., and Ceperley, D. (2018). Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nature Communications, 9(1), doi:10.1038/s41467-017-02411-5.
]Search in Google Scholar
[
Thibbotuwawa, A. (2019). Unmanned aerial vehicle fleet mission planning subject to changing weather conditions. Thibbotuwawa, A., Bocewicz, G., Nielsen, P., and Zbigniew, B. (2019). Planning deliveries with UAV routing under weather forecast and energy consumption constraints. IFAC-PapersOnLine, 52(13):820–825, doi:10.1016/j.ifacol.2019.11.231.
]Search in Google Scholar
[
Thibbotuwawa, A., Bocewicz, G., Radzki, G., Nielsen, P., and Banaszak, Z. (2020). UAV mission planning resistant to weather uncertainty. Sensors, 20(2):515, doi:10.3390/s20020515.
]Search in Google Scholar
[
Thibbotuwawa, A., Nielsen, P., Zbigniew, B., and Bocewicz, G. (2018). Energy Consumption in Unmanned Aerial Vehicles: A Review of Energy Consumption Models and Their Relation to the UAV Routing, pages 173–184. Springer International Publishing, doi:10.1007/978-3-319-99996-8_16.
]Search in Google Scholar
[
Yang, L., Qi, J., Xiao, J., and Yong, X. (2014). A literature review of UAV 3D path planning. In Proceeding of the 11th World Congress on Intelligent Control and Automation, pages 2376–2381. IEEE, doi:10.1109/wcica.2014.7053093.
]Search in Google Scholar
[
Yu, Z., Sun, F., Lu, X., and Song, Y. (2021). Overview of research on 3D path planning methods for rotor UAV. In 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE), pages 368–371. IEEE, doi:10.1109/ecie52353.2021.00081.
]Search in Google Scholar
[
Zatserkovnyi, I., Tishaiev, V., and Virshylo, I. (2016). Geographic Information Systems in Earth Sciences. Publishing house of Nizhyn State University named after Mykola Gogol.
]Search in Google Scholar
[
Zhang, C., Zhen, Z., Wang, D., and Li, M. (2010). UAV path planning method based on ant colony optimization. In 2010 Chinese Control and Decision Conference. IEEE, doi:10.1109/ccdc.2010.5498477.
]Search in Google Scholar
[
Zhang, M., Jiang, Z., Wang, L., and Yao, Y. (2017). Research on Parallel Ant Colony Algorithm for 3D Terrain Path Planning, pages 74–82. Springer Singapore, doi:10.1007/978-981-10-6463-0_7.
]Search in Google Scholar
[
Zhang, Z. and Zhu, L. (2023). A review on unmanned aerial vehicle remote sensing: Platforms, sensors, data processing methods, and applications. Drones, 7(6):398, doi:10.3390/drones7060398.
]Search in Google Scholar