Uneingeschränkter Zugang

Methodology for the measurement and 3D modelling of cultural heritage: a case study of the Monument to the Polish Diaspora Bond with the Homeland


Zitieren

Al Khalil, O. (2020). Structure from motion (SfM) photogrammetry as alternative to laser scanning for 3D modelling of historical monuments. Open Science Journal, 5(2), doi:10.23954/osj.v5i2.2327. Search in Google Scholar

Balletti, C., Beltrame, C., Costa, E., Guerra, F., and Vernier, P. (2016). 3D reconstruction of marble shipwreck cargoes based on underwater multi-image photogrammetry. Digital Applications in Archaeology and Cultural Heritage, 3(1):1–8, doi:10.1016/j.daach.2015.11.003. Search in Google Scholar

Błaszczak-Bąk, W., Suchocki, C., and Mrówczyńska, M. (2022). Optimization of point clouds for 3D bas-relief modeling. Automation in Construction, 140:104352, doi:10.1016/j.autcon.2022.104352. Search in Google Scholar

Bocheńska, A., Markiewicz, J., and Łapiński, S. (2019). The combination of the image and range-based 3D acquisition in archaeological and architectural research in the royal castle in Warsaw. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W15):177–184, doi:10.5194/isprs-archives-XLII-2-W15-177-2019. Search in Google Scholar

Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., and Chen, Y. (2018). Registration of laser scanning point clouds: A review. Sensors, 18(5):1641, doi:10.3390/s18051641. Search in Google Scholar

Du, X. and Zhuo, Y. (2009). A point cloud data reduction method based on curvature. In 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, pages 914–918. IEEE, doi:10.1109/CAIDCD.2009.5375038. Search in Google Scholar

Favre, K., Pressigout, M., Marchand, E., and Morin, L. (2021). A plane-based approach for indoor point clouds registration. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 7072–7079. IEEE, doi:10.1109/ICPR48806.2021.9412379. Search in Google Scholar

GharehTappeh, Z. S. and Peng, Q. (2021). Simplification and unfolding of 3D mesh models: review and evaluation of existing tools. Procedia CIRP, 100:121–126, doi:10.1016/j.procir.2021.05.023. Search in Google Scholar

Guidi, G. (2014). Terrestrial optical active sensors – theory & applications. In 3D recording and modelling in archaeology and cultural heritage: theory and best practices, pages 39–62. Search in Google Scholar

Heok, T. K. and Daman, D. (2004). A review on level of detail. In International Conference on Computer Graphics, Imaging and Visualization, 2004, CGIV 2004, pages 70–75. IEEE, doi:10.1109/CGIV.2004.1323963. Search in Google Scholar

https://polska-org.pl (2023). Description of the monument. Retrieved from https://polska-org.pl/8980295,Koszalin,Pomnik_Wiezi_Polonii_z_Macierza.html. Last accessed April 2023. Search in Google Scholar

Hui, Z., Cheng, P., Guan, Y., and Nie, Y. (2019). Review on airborne LiDAR point cloud filtering. Laser & Optoelectronics Progress, 55(6):060001, doi:10.3788/LOP55.060001. Search in Google Scholar

Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., and Haq, M. I. U. (2022). 3D printing–a review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3:33–42, doi:10.1016/j.susoc.2021.09.004. Search in Google Scholar

Kadhim, I., Abed, F. M., Vilbig, J. M., Sagan, V., and DeSilvey, C. (2023). Combining remote sensing approaches for detecting marks of archaeological and demolished constructions in Cahokia’s Grand Plaza, Southwestern Illinois. Remote Sensing, 15(4):1057, doi:10.3390/rs15041057. Search in Google Scholar

Kazhdan, M., Chuang, M., Rusinkiewicz, S., and Hoppe, H. (2020). Poisson surface reconstruction with envelope constraints. In Computer graphics forum, volume 39, pages 173–182. Wiley Online Library, doi:10.1111/cgf.14077. Search in Google Scholar

Klapa, P. and Gawronek, P. (2022). Synergy of geospatial data from TLS and UAV for Heritage Building Information Modeling (HBIM). Remote Sensing, 15(1):128, doi:10.3390/rs15010128. Search in Google Scholar

Li, H., Yamada, T., Jolivet, P., Furuta, K., Kondoh, T., Izui, K., and Nishiwaki, S. (2021). Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method. Finite Elements in Analysis and Design, 194:103561, doi:10.1016/j.finel.2021.103561. Search in Google Scholar

Lubis, A. R., Lubis, M., and Al, K. (2020). Optimization of distance formula in K-Nearest Neighbor method. Bulletin of Electrical Engineering and Informatics, 9(1):326–338, doi:10.11591/eei.v9i1.1464. Search in Google Scholar

Mara, H. and Krömker, S. (2017). Visual computing for archaeological artifacts with integral invariant filters in 3D. In GCH 2017 – Eurographics Workshop on Graphics and Cultural Heritage, pages 37–47. doi:10.2312/gch.20171290. Search in Google Scholar

Maturana, D. and Scherer, S. (2015). Voxnet: A 3D convolutional neural network for real-time object recognition. In IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/IROS.2015.7353481. Search in Google Scholar

McCarthy, J. (2014). Multi-image photogrammetry as a practical tool for cultural heritage survey and community engagement. Journal of Archaeological Science, 43:175–185, doi:10.1016/j.jas.2014.01.010. Search in Google Scholar

Mistretta, F., Sanna, G., Stochino, F., and Vacca, G. (2019). Structure from motion point clouds for structural monitoring. Remote Sensing, 11(16):1940, doi:10.3390/rs11161940. Search in Google Scholar

Montuori, R., Gilabert-Sansalvador, L., and Rosado-Torres, A. L. (2020). 3D printing for dissemination of Maya architectural heritage: The Acropolis of La Blanca (Guatemala). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44(M-1):481–488, doi:10.5194/isprs-archives-XLIV-M-1-2020-481-2020. Search in Google Scholar

Murtiyoso, A., Grussenmeyer, P., Landes, T., and Macher, H. (2021). First assessments into the use of commercial-grade solid state lidar for low cost heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43(B2):599–604, doi:10.5194/isprs-archives-XLIII-B2-2021-599-2021. Search in Google Scholar

Neumüller, M., Reichinger, A., Rist, F., and Kern, C. (2014). 3D printing for cultural heritage: Preservation, accessibility, research and education. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8355, pages 119–134. Springer, doi:10.1007/978-3-662-44630-0_9. Search in Google Scholar

Nezhadarya, E., Taghavi, E., Razani, R., Liu, B., and Luo, J. (2020). Adaptive hierarchical down-sampling for point cloud classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12956–12964. doi:10.1109/CVPR42600.2020.01297. Search in Google Scholar

Nowak, R., Orłowicz, R., and Rutkowski, R. (2020). Use of TLS (LiDAR) for building diagnostics with the example of a historic building in Karlino. Buildings, 10(2):24, doi:10.3390/buildings10020024. Search in Google Scholar

Rodríguez-Gonzálvez, P., Jimenez Fernandez-Palacios, B., Muñoz-Nieto, Á. L., Arias-Sanchez, P., and Gonzalez-Aguilera, D. (2017). Mobile LiDAR system: New possibilities for the documentation and dissemination of large cultural heritage sites. Remote Sensing, 9(3):189, doi:10.3390/rs9030189. Search in Google Scholar

Salwierz, A. and Szymczyk, T. (2020). Methods of creating realistic spaces–3D scanning and 3D modelling. Journal of Computer Sciences Institute, 14:101–108, doi:10.35784/jcsi.1584. Search in Google Scholar

Sammartano, G., Avena, M., Fillia, E., and Spanò, A. (2023). Integrated HBIM-GIS models for multi-scale seismic vulnerability assessment of historical buildings. Remote Sensing, 15(3):833, doi:10.3390/rs15030833. Search in Google Scholar

Shahrubudin, N., Lee, T. C., and Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35:1286–1296, doi:10.1016/j.promfg.2019.06.089. Search in Google Scholar

Shih, N.-J. and Chen, Y. (2020). LiDAR-and AR-Based monitoring of evolved building facades upon zoning conflicts. Sensors, 20(19):5628, doi:10.3390/s20195628. Search in Google Scholar

Suchocki, C., Błaszczak-Bąk, W., Damięcka-Suchocka, M., Jagoda, M., and Masiero, A. (2020a). On the use of the OptD method for building diagnostics. Remote Sensing, 12(11):1806, doi:10.3390/rs12111806. Search in Google Scholar

Suchocki, C., Błaszczak-Bąk, W., Janicka, J., and Dumalski, A. (2021). Detection of defects in building walls using modified OptD method for down-sampling of point clouds. Building Research & Information, 49(2):197–215, doi:10.1080/09613218.2020.1729687. Search in Google Scholar

Suchocki, C., Damięcka-Suchocka, M., Katzer, J., Janicka, J., Rapiński, J., and Stałowska, P. (2020b). Remote detection of moisture and bio-deterioration of building walls by time-of-flight and phase-shift terrestrial laser scanners. Remote Sensing, 12(11):1708, doi:10.3390/rs12111708. Search in Google Scholar

Tan, K., Cheng, X., Ju, Q., and Wu, S. (2016). Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels. IEEE geoscience and remote sensing letters, 13(11):1711–1715, doi:10.1109/LGRS.2016.2605158. Search in Google Scholar

Temizer, T., Nemli, G., Ekizce, E., Ekizce, A., Demir, S., Bayram, B., Askin, F., Cobanoglu, A., and Yilmaz, H. (2013). 3D documentation of a historical monument using terrestrial laser scanning case study: Byzantine Water Cistern, Istanbul. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40:623–628, doi:10.5194/isprsarchives-XL-5-W2-623-2013. Search in Google Scholar

Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157. Search in Google Scholar

Ðurić, I., Vasiljević, I., Obradović, M., Stojaković, V., Kićanović, J., and Obradović, R. (2021). Comparative analysis of open-source and commercial photogrammetry software for cultural heritage. In eCAADe 2021 International Scientific Conference, pages 8–10. doi:10.52842/conf.ecaade.2021.2.243. Search in Google Scholar

Wabiński, J. and Mościcka, A. (2019). Natural heritage reconstruction using full-color 3D printing: a case study of the valley of five Polish ponds. Sustainability, 11(21):5907, doi:10.3390/su11215907. Search in Google Scholar

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1912–1920. doi:10.1109/CVPR.2015.7298801. Search in Google Scholar

Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., and Wang, R. (2014). Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote sensing, 6(11):10413–10434, doi:10.3390/rs61110413. Search in Google Scholar

Yan, W., Behera, A., and Rajan, P. (2010). Recording and documenting the chromatic information of architectural heritage. Journal of cultural heritage, 11(4):438–451, doi:10.1016/j.culher.2010.02.005. Search in Google Scholar

Youn, H.-C., Yoon, J.-S., and Ryoo, S.-L. (2021). HBIM for the characteristics of Korean traditional wooden architecture: bracket set modelling based on 3d scanning. Buildings, 11(11):506, doi:10.3390/buildings11110506. Search in Google Scholar

Zheng, J., Zhang, J., Li, J., Tang, R., Gao, S., and Zhou, Z. (2020). Structured3d: A large photo-realistic dataset for structured 3d modeling. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pages 519–535. Springer, doi:10.1007/978-3-030-58545-7_30. Search in Google Scholar

eISSN:
2391-8152
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Informatik, andere, Geowissenschaften, Geodäsie, Kartografie und Photogrammetrie