This work is licensed under the Creative Commons Attribution 4.0 International License.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin 2021; 71: 7-33. doi: 10.3322/caac.21654SiegelRLMillerKDFuchsHEJemalA.Cancer Statistics, 2021. CA Cancer J Clin2021; 71: 7-33. 10.3322/caac.21654Open DOISearch in Google Scholar
Moore A, Donahue T. Pancreatic cancer. Jama 2019; 322: 1426. doi: 10.1001/jama.2019.14699MooreADonahueT.Pancreatic cancer. Jama2019; 322: 1426. 10.1001/jama.2019.14699Open DOISearch in Google Scholar
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74: 2913-21. doi: 10.1158/0008-5472.Can-14-0155RahibLSmithBDAizenbergRRosenzweigABFleshmanJMMatrisianLM.Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res2014; 74: 2913-21. 10.1158/0008-5472.Can-14-0155Open DOISearch in Google Scholar
Warshaw AL, del Castillo FC. Pancreatic carcinoma. N Engl J Med 1992; 326: 455-65. doi: 10.1056/nejm199202133260706WarshawALdel CastilloFC.Pancreatic carcinoma. N Engl J Med1992; 326: 455-65. 10.1056/nejm199202133260706Open DOISearch in Google Scholar
Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, et al. SEER cancer statistics review, 1975-2009. [internet]. Bethesda, MD, USA: National Cancer Institute; 2012. [cited 2025 Jan 15]. Available at: http://seer.cancer.gov/csr/1975_2012/HowladerNNooneAMKrapchoMGarshellJMillerDAltekruseSFSEER cancer statistics review, 1975-2009. [internet]. Bethesda, MD, USA: National Cancer Institute; 2012. [cited 2025 Jan 15]. Available at: http://seer.cancer.gov/csr/1975_2012/Search in Google Scholar
Klepsch V, Hermann-Kleiter N, Do-Dinh P, Jakic B, Offermann A, Efremova M, et al. Nuclear receptor NR2F6 inhibition potentiates responses to PD-L1/PD-1 cancer immune checkpoint blockade. Nat Commun 2018; 9: 1538. doi: 10.1038/s41467-018-04004-2KlepschVHermann-KleiterNDo-DinhPJakicBOffermannAEfremovaMNuclear receptor NR2F6 inhibition potentiates responses to PD-L1/PD-1 cancer immune checkpoint blockade. Nat Commun2018; 9: 1538. 10.1038/s41467-018-04004-2Open DOISearch in Google Scholar
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, et al. Immune checkpoint blockade in pancreatic cancer: trudging through the immune desert. Semin Cancer Biol 2022; 86: 14-27. doi: 10.1016/j.semcancer.2022.08.009LiXGulatiMLarsonACSolheimJCJainMKumarSImmune checkpoint blockade in pancreatic cancer: trudging through the immune desert. Semin Cancer Biol2022; 86: 14-27. 10.1016/j.semcancer.2022.08.009Open DOISearch in Google Scholar
Heumann T, Azad N. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev 2021; 40: 837-62. doi: 10.1007/s10555-021-09981-3HeumannTAzadN.Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev2021; 40: 837-62. 10.1007/s10555-021-09981-3Open DOISearch in Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74. doi: 10.1016/j.cell.2011.02.013HanahanDWeinbergRA.Hallmarks of cancer: the next generation. Cell2011; 144: 646-74. 10.1016/j.cell.2011.02.013Open DOISearch in Google Scholar
Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5: 876-85. doi: 10.1038/nrc1736FesikSW.Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer2005; 5: 876-85. 10.1038/nrc1736Open DOISearch in Google Scholar
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1060-72. doi: 10.1016/j.cell.2012.03.042DixonSJLembergKMLamprechtMRSkoutaRZaitsevEMGleasonCEFerroptosis: an iron-dependent form of nonapoptotic cell death. Cell2012; 149: 1060-72. 10.1016/j.cell.2012.03.042Open DOISearch in Google Scholar
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171: 273-85. doi: 10.1016/j.cell.2017.09.021StockwellBRFriedmann AngeliJPBayirHBushAIConradMDixonSJFerroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell2017; 171: 273-85. 10.1016/j.cell.2017.09.021Open DOISearch in Google Scholar
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 2017; 42: 245-54. doi: 10.1016/j. tibs.2016.10.004ShiJGaoWShaoF.Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci2017; 42: 245-54. 10.1016/j. tibs.2016.10.004Open DOISearch in Google Scholar
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171: 2000-16. doi: 10.1111/bph.12416FatokunAADawsonVLDawsonTM.Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol2014; 171: 2000-16. 10.1111/bph.12416Open DOISearch in Google Scholar
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022; 375: 1254-61. doi: 10.1126/science.abf0529TsvetkovPCoySPetrovaBDreishpoonMVermaAAbdusamadMCopper induces cell death by targeting lipoylated TCA cycle proteins. Science2022; 375: 1254-61. 10.1126/science.abf0529Open DOISearch in Google Scholar
Li SR, Bu LL, Cai L. Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther 2022; 7: 158. doi: 10.1038/s41392-022-01014-xLiSRBuLLCaiL.Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther2022; 7: 158. 10.1038/s41392-022-01014-xOpen DOISearch in Google Scholar
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, et al. Necroptosis in immuno-oncology and cancer immunotherapy. Cells 2020; 9: 1823. doi: 10.3390/cells9081823SprootenJDe WijngaertPVanmeerbeerkIMartinSVangheluwePSchlennerSNecroptosis in immuno-oncology and cancer immunotherapy. Cells2020; 9: 1823. 10.3390/cells9081823Open DOISearch in Google Scholar
Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma. Front Immunol 2022; 13: 925618. doi: 10.3389/fimmu.2022.925618ZhangZZengXWuYLiuYZhangXSongZ.Cuproptosis-related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma. Front Immunol2022; 13: 925618. 10.3389/fimmu.2022.925618Open DOISearch in Google Scholar
Li Z, Zhang H, Wang X, Wang Q, Xue J, Shi Y, et al. Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol 2022; 13: 996836. doi: 10.3389/fimmu.2022.996836LiZZhangHWangXWangQXueJShiYIdentification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol2022; 13: 996836. 10.3389/fimmu.2022.996836Open DOISearch in Google Scholar
Ji ZH, Ren WZ, Wang HQ, Gao W, Yuan B. Molecular subtyping based on cuproptosis-related genes and characterization of tumor microenvironment infiltration in kidney renal clear cell carcinoma. Front Oncol 2022; 12: 919083. doi: 10.3389/fonc.2022.919083JiZHRenWZWangHQGaoWYuanB.Molecular subtyping based on cuproptosis-related genes and characterization of tumor microenvironment infiltration in kidney renal clear cell carcinoma. Front Oncol2022; 12: 919083. 10.3389/fonc.2022.919083Open DOISearch in Google Scholar
Fang Z, Wang W, Liu Y, Hua J, Liang C, Liu J, et al. Cuproptosis-related gene DLAT as a novel biomarker correlated with prognosis, chemoresistance, and immune infiltration in pancreatic adenocarcinoma: a preliminary study based on bioinformatics analysis. Curr Oncol 2023; 30: 2997-3019. doi: 10.3390/curroncol30030228FangZWangWLiuYHuaJLiangCLiuJCuproptosis-related gene DLAT as a novel biomarker correlated with prognosis, chemoresistance, and immune infiltration in pancreatic adenocarcinoma: a preliminary study based on bioinformatics analysis. Curr Oncol2023; 30: 2997-3019. 10.3390/curroncol30030228Open DOISearch in Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559. doi: 10.1186/14712105-9-559LangfelderPHorvathS.WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics2008; 9: 559. 10.1186/14712105-9-559Open DOISearch in Google Scholar
Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med 1997; 16: 385-95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3TibshiraniR.The lasso method for variable selection in the Cox model. Stat Med1997; 16: 385-95. 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3Open DOISearch in Google Scholar
Hidalgo M. Pancreatic cancer. N Engl J Med 2010; 362: 1605-17. doi: 10.1056/NEJMra0901557HidalgoM.Pancreatic cancer. N Engl J Med2010; 362: 1605-17. 10.1056/NEJMra0901557Open DOISearch in Google Scholar
Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691-703. doi: 10.1056/NEJMoa1304369Von HoffDDErvinTArenaFPChioreanEGInfanteJMooreMIncreased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med2013; 369: 1691-703. 10.1056/NEJMoa1304369Open DOISearch in Google Scholar
Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-25. doi: 10.1056/NEJMoa1011923ConroyTDesseigneFYchouMBouchéOGuimbaudRBécouarnYFOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med2011; 364: 1817-25. 10.1056/NEJMoa1011923Open DOISearch in Google Scholar
Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013; 342: 1432-3. doi: 10.1126/science.342.6165.1432Couzin-FrankelJ.Breakthrough of the year 2013. Cancer immunotherapy. Science2013; 342: 1432-3. 10.1126/science.342.6165.1432Open DOISearch in Google Scholar
Kumar A, Swain CA, Shevde LA. Informing the new developments and future of cancer immunotherapy: future of cancer immunotherapy. Cancer Metastasis Rev 2021; 40: 549-62. doi: 10.1007/s10555-021-09967-1KumarASwainCAShevdeLA.Informing the new developments and future of cancer immunotherapy: future of cancer immunotherapy. Cancer Metastasis Rev2021; 40: 549-62. 10.1007/s10555-021-09967-1Open DOISearch in Google Scholar
Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and prevention of pancreatic cancer. Trends Cancer 2018; 4: 418-28. doi: 10.1016/j. trecan.2018.04.001MorrisonAHByrneKTVonderheideRH.Immunotherapy and prevention of pancreatic cancer. Trends Cancer2018; 4: 418-28. 10.1016/j. trecan.2018.04.001Open DOISearch in Google Scholar
Yin C, Alqahtani A, Noel MS. The next frontier in pancreatic cancer: targeting the tumor immune milieu and molecular pathways. Cancers 2022; 14: 2619. doi: 10.3390/cancers14112619YinCAlqahtaniANoelMS.The next frontier in pancreatic cancer: targeting the tumor immune milieu and molecular pathways. Cancers2022; 14: 2619. 10.3390/cancers14112619Open DOISearch in Google Scholar
Li F, He C, Yao H, Liang W, Ye X, Ruan J, et al. GLUT1 regulates the tumor immune microenvironment and promotes tumor metastasis in pancreatic adenocarcinoma via ncRNA-mediated network. J Cancer 2022; 13: 2540-58. doi: 10.7150/jca.72161LiFHeCYaoHLiangWYeXRuanJGLUT1 regulates the tumor immune microenvironment and promotes tumor metastasis in pancreatic adenocarcinoma via ncRNA-mediated network. J Cancer2022; 13: 2540-58. 10.7150/jca.72161Open DOISearch in Google Scholar
Garrido-Laguna I, Hidalgo M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol 2015; 12: 319-334. doi: 10.1038/nrclinonc.2015.53Garrido-LagunaIHidalgoM.Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol2015; 12: 319-334. 10.1038/nrclinonc.2015.53Open DOISearch in Google Scholar
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022; 15: 174. doi: 10.1186/s13045-022-01392-3TongXTangRXiaoMXuJWangWZhangBTargeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol2022; 15: 174. 10.1186/s13045-022-01392-3Open DOISearch in Google Scholar
Qin Y, Liu Y, Xiang X, Long X, Chen Z, Huang X, et al. Cuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis. Mol Cancer 2023; 22: 59. doi: 10.1186/s12943-023-01752-8QinYLiuYXiangXLongXChenZHuangXCuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis. Mol Cancer2023; 22: 59. 10.1186/s12943-023-01752-8Open DOISearch in Google Scholar
Guo B, Yang F, Zhang L, Zhao Q, Wang W, Yin L, et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater 2023; 35: e2212267. doi: 10.1002/adma.202212267GuoBYangFZhangLZhaoQWangWYinLCuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with αPD-L1 for enhanced cancer immunotherapy. Adv Mater2023; 35: e2212267. 10.1002/adma.202212267Open DOISearch in Google Scholar
Liu WQ, Lin WR, Yan L, Xu WH, Yang J. Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev 2024; 321: 211-27. doi: 10.1111/imr.13276LiuWQLinWRYanLXuWHYangJ.Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev2024; 321: 211-27. 10.1111/imr.13276Open DOISearch in Google Scholar
Li J, Yin J, Li W, Wang H, Ni B. Molecular subtypes based on cuproptosis-related genes and tumor microenvironment infiltration characteristics in pancreatic adenocarcinoma. Cancer Cell Int 2023; 23: 7. doi: 10.1186/s12935-022-02836-zLiJYinJLiWWangHNiB.Molecular subtypes based on cuproptosis-related genes and tumor microenvironment infiltration characteristics in pancreatic adenocarcinoma. Cancer Cell Int2023; 23: 7. 10.1186/s12935-022-02836-zOpen DOISearch in Google Scholar
Wang G, Chen B, Su Y, Qu N, Zhou D, Zhou W. CEP55 as a promising immune intervention marker to regulate tumor progression: a pan-cancer analysis with experimental verification. Cells 2023; 12: 2457. doi: 10.3390/cells12202457WangGChenBSuYQuNZhouDZhouW.CEP55 as a promising immune intervention marker to regulate tumor progression: a pan-cancer analysis with experimental verification. Cells2023; 12: 2457. 10.3390/cells12202457Open DOISearch in Google Scholar
Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, et al. State of the art and future directions of pancreatic ductal adenocarcinoma therapy. Pharmacol Ther 2015; 155: 80-104. doi: 10.1016/j. pharmthera.2015.08.006NeuzilletCTijeras-RaballandARagulanCCrosJPatilYMartinetMState of the art and future directions of pancreatic ductal adenocarcinoma therapy. Pharmacol Ther2015; 155: 80-104. 10.1016/j. pharmthera.2015.08.006Open DOISearch in Google Scholar
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2021; 221: 107753. doi: 10.1016/j.pharmthera.2020.107753XiaoYYuD.Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther2021; 221: 107753. 10.1016/j.pharmthera.2020.107753Open DOISearch in Google Scholar
Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015; 348: 74-80. doi: 10.1126/science.aaa6204JoyceJAFearonDT.T cellexclusion immune privilege and the tumor microenvironment. Science2015; 348: 74-80. 10.1126/science.aaa6204Open DOISearch in Google Scholar
Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Lohr JM, et al. Pancreatic cancer microenvironment. Int J Cancer 2007; 121: 699-705. doi: 10.1002/ijc.22871KleeffJBeckhovePEspositoIHerzigSHuberPELohrJMPancreatic cancer microenvironment. Int J Cancer2007; 121: 699-705. 10.1002/ijc.22871Open DOISearch in Google Scholar
Korc M. Pancreatic cancer-associated stroma production. Am J Surg 2007; 194: S84-86. doi: 10.1016/j.amjsurg.2007.05.004KorcM.Pancreatic cancer-associated stroma production. Am J Surg2007; 194: S84-86. 10.1016/j.amjsurg.2007.05.004Open DOISearch in Google Scholar
Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pancancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer 2018; 6: 63. doi: 10.1186/s40425-018-0370-7DanaherPWarrenSLuRSamayoaJSullivanAPekkerIPancancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer2018; 6: 63. 10.1186/s40425-018-0370-7Open DOISearch in Google Scholar
Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2014; 2: 616-31. doi: 10.1158/2326-6066.CIR-14-0027LutzERWuAABigelowESharmaRMoGSoaresKImmunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res2014; 2: 616-31. 10.1158/2326-6066.CIR-14-0027Open DOISearch in Google Scholar
J Gunderson A, Rajamanickam V, Bui C, Bernard B, Pucilowska J, Ballesteros-Merino C, et al. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology 2021; 10: 1900635. doi: 10.1080/2162402x.2021.1900635J GundersonARajamanickamVBuiCBernardBPucilowskaJBallesteros-MerinoCGerminal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology2021; 10: 1900635. 10.1080/2162402x.2021.1900635Open DOISearch in Google Scholar
Tang R, Zhang Y, Liang C, Xu J, Meng Q, Hua J, et al. The role of m6A-related genes in the prognosis and immune microenvironment of pancreatic adenocarcinoma. PeerJ 2020; 8: e9602. doi: 10.7717/peerj.9602TangRZhangYLiangCXuJMengQHuaJThe role of m6A-related genes in the prognosis and immune microenvironment of pancreatic adenocarcinoma. PeerJ2020; 8: e9602. 10.7717/peerj.9602Open DOISearch in Google Scholar
Wang L, Zhang S, Li H, Xu Y, Wu Q, Shen J, et al. Quantification of m6A RNA methylation modulators pattern was a potential biomarker for prognosis and associated with tumor immune microenvironment of pancreatic adenocarcinoma. BMC Cancer 2021; 21: 876. doi: 10.1186/s12885-021-08550-9WangLZhangSLiHXuYWuQShenJQuantification of m6A RNA methylation modulators pattern was a potential biomarker for prognosis and associated with tumor immune microenvironment of pancreatic adenocarcinoma. BMC Cancer2021; 21: 876. 10.1186/s12885-021-08550-9Open DOISearch in Google Scholar
Wang G, Yang L, Gao J, Mu H, Song Y, Jiang X, et al. Identification of candidate biomarker ASXL2 and its predictive value in pancreatic carcinoma. Front Oncol 2021; 11: 736694. doi: 10.3389/fonc.2021.736694WangGYangLGaoJMuHSongYJiangXIdentification of candidate biomarker ASXL2 and its predictive value in pancreatic carcinoma. Front Oncol2021; 11: 736694. 10.3389/fonc.2021.736694Open DOISearch in Google Scholar
Lestari B, Utomo RY. CEP55 inhibitor: Extensive computational approach defining a new target of cell cycle machinery agent. Adv Pharm Bull 2022; 12: 191-99. doi: 10.34172/apb.2022.021LestariBUtomoRY.CEP55 inhibitor: Extensive computational approach defining a new target of cell cycle machinery agent. Adv Pharm Bull2022; 12: 191-99. 10.34172/apb.2022.021Open DOISearch in Google Scholar
Kalimutho M, Sinha D, Jeffery J, Nones K, Srihari S, Fernando WC, et al. CEP55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Mol Med 2018; 10: e8566. doi: 10.15252/emmm.201708566KalimuthoMSinhaDJefferyJNonesKSrihariSFernandoWCCEP55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Mol Med2018; 10: e8566. 10.15252/emmm.201708566Open DOISearch in Google Scholar
Sinha D, Nag P, Nanayakkara D, Duijf PHG, Burgess A, Raninga P, et al. Cep55 overexpression promotes genomic instability and tumorigenesis in mice. Commun Biol 2020; 3: 593. doi: 10.1038/s42003-020-01304-6SinhaDNagPNanayakkaraDDuijfPHGBurgessARaningaPCep55 overexpression promotes genomic instability and tumorigenesis in mice. Commun Biol2020; 3: 593. 10.1038/s42003-020-01304-6Open DOISearch in Google Scholar
Zhang X, Xu Q, Li E, Shi T, Chen H. CEP55 predicts the poor prognosis and promotes tumorigenesis in endometrial cancer by regulating the Foxo1 signaling. Mol Cell Biochem 2023; 478: 1561-71. doi: 10.1007/s11010-022-04607-wZhangXXuQLiEShiTChenH.CEP55 predicts the poor prognosis and promotes tumorigenesis in endometrial cancer by regulating the Foxo1 signaling. Mol Cell Biochem2023; 478: 1561-71. 10.1007/s11010-022-04607-wOpen DOISearch in Google Scholar
Ye Y, Chen Z, Shen Y, Qin Y, Wang H. Development and validation of a fourlipid metabolism gene signature for diagnosis of pancreatic cancer. FEBS Open Bio 2021; 11: 3153-70. doi: 10.1002/2211-5463.13074YeYChenZShenYQinYWangH.Development and validation of a four-lipid metabolism gene signature for diagnosis of pancreatic cancer. FEBS Open Bio2021; 11: 3153-70. 10.1002/2211-5463.13074Open DOISearch in Google Scholar
Luo X, Linghu M, Zhou X, Ru Y, Huang Q, Liu D, et al. Merestinib inhibits cuproptosis by targeting NRF2 to alleviate acute liver injury. Free Radic Biol Med 2025; 229: 68-81. doi: 10.1016/j.freeradbiomed.2025.01.029LuoXLinghuMZhouXRuYHuangQLiuDMerestinib inhibits cuproptosis by targeting NRF2 to alleviate acute liver injury. Free Radic Biol Med2025; 229: 68-81. 10.1016/j.freeradbiomed.2025.01.029Open DOISearch in Google Scholar