Application of Landscape Metrics and Object-Oriented Remote Sensing to Detect the Spatial Arrangement of Agricultural Land
31. März 2022
Über diesen Artikel
Online veröffentlicht: 31. März 2022
Seitenbereich: 25 - 35
Eingereicht: 12. Juli 2021
DOI: https://doi.org/10.2478/quageo-2022-0002
Schlüsselwörter
© 2022 Rezvan Safdary et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3

The area of crops and the results of accuracy assessment_
Crop type | Area] | Number of reference polygons | Omission error | Commission error |
---|---|---|---|---|
[ha] | [−] | [%] | ||
Wheat | 21,803 | 214 | 6.59 | 14.01 |
Alfalfa | 4892 | 137 | 17.02 | 15.59 |
Fruit tree | 5561 | 162 | 8.43 | 9.87 |
Vegetable | 2816 | 99 | 7.36 | 11.11 |
Kappa Coefficient = 82.84% | Overall Accuracy = 87.41% |
Description of landscape metrics used in this research, adapted from Leitão et al_ (2012)_
Landscape metric | Acronym | Aspect of pattern | Range [unit] |
---|---|---|---|
Number of patches | NP | Composition | NP > 0, without limit [−] |
Mean patch size | MPS | Composition | MPS > 0, without limit [ha] |
Mean shape index | MSI | Structure | MSI > 1, without limit [−] |
Perimeter-to-area ratio | PARA | Structure | PARA > 1, without limit [−] |
Euclidian nearest-neighbor distance | ENN | Configuration | ENN > 0, without limit [m] |
The classification scheme is used to recognise crop types_
Crop type | Object code | Final code | ||
---|---|---|---|---|
L1 | L2 | L3 | ||
Wheat | 1 | 1 | 0 | 110 |
Alfalfa | 1 | 1 | 1 | 111 |
Fruit tree | 0 | 1 | 1 | 011 |
Vegetable | 0 | 0 | 1 | 001 |