Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and EconomicsBudapest, Hungary
Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and EconomicsBudapest, Hungary
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
C. H. Bennett, S. J. Wiesner (1992). “Communication via 1-and 2-particle operators on Einstein-Podolsky-Rosen states”. Physical Review Letters 69, 2881–2884. https://doi.org/10.1103/PhysRevLett.69.2881.BennettC. H.WiesnerS. J. (1992). “Communication via 1-and 2-particle operators on Einstein-Podolsky-Rosen states”. Physical Review Letters.69.2881–2884.https://doi.org/10.1103/PhysRevLett.69.2881.Search in Google Scholar
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters (1993). “Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels”. Physical Review Letters 70, 1895–1899. https://doi.org/10.1103/PhysRevLett.70.1895.BennettC. H.BrassardG.CrepeauC.JozsaR.PeresA.WoottersW. K. (1993). “Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels”. Physical Review Letters.70.1895–1899.https://doi.org/10.1103/PhysRevLett.70.1895.Search in Google Scholar
S. Imre and M. Berces (2021). “Entanglement-based competition resolution in distributed systems”. IEEE Access 9, 10253–10262. https://doi.org/10.1109/ACCESS.2021.3050271.ImreS.BercesM. (2021). “Entanglement-based competition resolution in distributed systems”. IEEE Access.9.10253–10262.https://doi.org/10.1109/ACCESS.2021.3050271.Search in Google Scholar
P. W. Shor (2002). “Introduction to quantum algorithms”. AMS PSAPM 58, 143–159. https://doi.org/10.48550/arXiv.quant-ph/0005003.ShorP. W. (2002). “Introduction to quantum algorithms”. AMS PSAPM.58.143–159.https://doi.org/10.48550/arXiv.quant-ph/0005003.Search in Google Scholar
R. Jozsa (1998). “Quantum algorithms and the Fourier transform”. Proceedings of the Royal Society of London. Series A 454, 323–337. https://doi.org/10.1098/rspa.1998.0163JozsaR. (1998). “Quantum algorithms and the Fourier transform”. Proceedings of the Royal Society of London. Series A.454.323–337.https://doi.org/10.1098/rspa.1998.0163Search in Google Scholar
S. Imre (2007). “Quantum existence testing and its application for finding extreme values in unsorted databases”. IEEE Transactions on Computers 56: 5, 706–710. https://doi.org/10.1109/TC.2007.1032.ImreS. (2007). “Quantum existence testing and its application for finding extreme values in unsorted databases”. IEEE Transactions on Computers.56: 5.706–710.https://doi.org/10.1109/TC.2007.1032.Search in Google Scholar
L. Gyongyosi, S. Imre, H. V. Nguyen (2018). “A survey on quantum channel capacities”. IEEE Communications Surveys and Tutorials 20: 2. https://doi.org/10.1109/COMST.2017.2786748.GyongyosiL.ImreS.NguyenH. V. (2018). “A survey on quantum channel capacities”. IEEE Communications Surveys and Tutorials.20: 2 https://doi.org/10.1109/COMST.2017.2786748.Search in Google Scholar
Q. A. Memon, M. Al Ahmad and M. Pecht, M (2024). “Quantum computing: Navigating the future of computation, challenges, and technological breakthroughs”. Quantum Reports, 6, 627663. https://doi.org/10.3390/quantum6040039.MemonQ. A.Al AhmadM.PechtM.M (2024). “Quantum computing: Navigating the future of computation, challenges, and technological breakthroughs”. Quantum Reports.6.627663.https://doi.org/10.3390/quantum6040039.Search in Google Scholar
Z. Yang, M. Zolanvari, and R. Jain (2023). “A survey of important issues in quantum computing and communications”. IEEE Communications and Surveys Tutorials 25: 2, 1059–1094. https://doi.org/10.1109/COMST.2023.3254481.YangZ.ZolanvariM.JainR. (2023). “A survey of important issues in quantum computing and communications”. IEEE Communications and Surveys Tutorials.25: 2.1059–1094.https://doi.org/10.1109/COMST.2023.3254481.Search in Google Scholar
H. Sahu, H. P. Gupta (2023). “Quantum computing toolkit from nuts and bolts to sack of tools”. arXiv:2302.08884 https://doi.org/10.48550/arXiv.2302.08884.SahuH.GuptaH. P. (2023). “Quantum computing toolkit from nuts and bolts to sack of tools”. arXiv:2302.08884.https://doi.org/10.48550/arXiv.2302.08884.Search in Google Scholar
P. Singh, R. Dasgupta, A. Singh et al. (2024). “A survey on available tools and technologies enabling quantum computing”. IEEE Access 57974–57991. https://doi.org/10.1109/ACCESS.2024.3388005.SinghP.DasguptaR.SinghA. (2024). “A survey on available tools and technologies enabling quantum computing”. IEEE Access.57974–57991.https://doi.org/10.1109/ACCESS.2024.3388005.Search in Google Scholar
L. Gyongyosi and S. Imre (2019). “A survey on quantum computing technology”. Computer Science Review 31, 51–71. https://doi.org/10.1016/j.cosrev.2018.11.002.GyongyosiL.ImreS. (2019). “A survey on quantum computing technology”. Computer Science Review.31.51–71.https://doi.org/10.1016/j.cosrev.2018.11.002.Search in Google Scholar
S. S. Gill et al (2021). “Quantum computing: a taxonomy, systematic review and future directions”. Software: Practice and Experience https://doi.org/10.1002/spe.3039.GillS. S. (2021). “Quantum computing: a taxonomy, systematic review and future directions”. Software: Practice and Experience.https://doi.org/10.1002/spe.3039.Search in Google Scholar
E. Chae, J. Choi, J. Kim (2024). “An elementary review on basic principles and developments of qubits for quantum computing”. Nano Convergence 11, 11. https://doi.org/10.1186/s40580-024-00418-5.ChaeE.ChoiJ.KimJ. (2024). “An elementary review on basic principles and developments of qubits for quantum computing”. Nano Convergence.11.11.https://doi.org/10.1186/s40580-024-00418-5.Search in Google Scholar
A. Bochkarev, R. Heese, S. Jager et al (2024). “Quantum computing for discrete optimization: a highlight of three technologies”. arXiv:2409.01373 https://doi.org/10.48550/arXiv.2409.01373.BochkarevA.HeeseR.JagerS. (2024). “Quantum computing for discrete optimization: a highlight of three technologies”. arXiv:2409.01373.https://doi.org/10.48550/arXiv.2409.01373.Search in Google Scholar
Y. Li, M. Tian, G. Liu, C. Peng, and L. Jiao (2020). “Quantum optimization and quantum learning: A survey”. IEEE Access 8, 23 568–23 593. https://doi.org/10.1109/ACCESS.2020.2970105.LiY.TianM.LiuG.PengC.JiaoL. (2020). “Quantum optimization and quantum learning: A survey”. IEEE Access.8.23568–23593.https://doi.org/10.1109/ACCESS.2020.2970105.Search in Google Scholar
J. Kusyk, S. M. Saeed, and M. U. Uyar (2021). “Survey on quantum circuit compilation for noisy intermediatescale quantum computers: Artificial intelligence to heuristics”. IEEE Transactions on Quantum Engineering 2, 1–16. https://doi.org/10.1109/TQE.2021.3068355.KusykJ.SaeedS. M.UyarM. U. (2021). “Survey on quantum circuit compilation for noisy intermediatescale quantum computers: Artificial intelligence to heuristics”. IEEE Transactions on Quantum Engineering.2.1–16.https://doi.org/10.1109/TQE.2021.3068355.Search in Google Scholar
P. Upama, M. J. Hossain Faruk, M. Nazim, M. Masum, H. Shahriar, G. Uddin, S. Barzanjeh, A. Rahman, and S. Ahamed (2022). “Evolution of quantum computing: a systematic survey on the use of quantum computing tools”. 2022 IEEE Computers, Software, and Applications Conference https://doi.org/10.1109/COMPSAC54236.2022.00096.UpamaP.Hossain FarukM. J.NazimM.MasumM.ShahriarH.UddinG.BarzanjehS.RahmanA.AhamedS. (2022). “Evolution of quantum computing: a systematic survey on the use of quantum computing tools”. 2022 IEEE Computers, Software, and Applications Conference.https://doi.org/10.1109/COMPSAC54236.2022.00096.Search in Google Scholar
F. V. Massoli, L. Vadicamo, G. Amato, and F. Falchi (2022). “A leap among quantum computing and quantum neural networks: A survey”. ACM Computing Surveys 55, 5. https://doi.org/10.1145/3529756.MassoliF. V.VadicamoL.AmatoG.FalchiF. (2022). “A leap among quantum computing and quantum neural networks: A survey”. ACM Computing Surveys.55.5.https://doi.org/10.1145/3529756.Search in Google Scholar
S. B. Ramezani, A. Sommers, H. K. Manchukonda, S. Rahimi, and A. Amirlatifi (2020). “Machine learning algorithms in quantum computing: A survey”. 2020 International Joint Conference on Neural Networks (IJCNN) 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207714.RamezaniS. B.SommersA.ManchukondaH. K.RahimiS.AmirlatifiA. (2020). “Machine learning algorithms in quantum computing: A survey”. 2020 International Joint Conference on Neural Networks (IJCNN).1–8.https://doi.org/10.1109/IJCNN48605.2020.9207714.Search in Google Scholar
D. Peral-Garcia et al (2024). “Systematic literature review: Quantum machine learning and its applications”. Computer Science Review https://doi.org/10.1016/j.cosrev.2024.100619.Peral-GarciaD. (2024). “Systematic literature review: Quantum machine learning and its applications”. Computer Science Review.https://doi.org/10.1016/j.cosrev.2024.100619.Search in Google Scholar
M. D. Garcia, A. M. Romero (2024). “Survey on computational applications of tensor network simulations”. IEEE Access DOI: 10.1109/ACCESS.2024.3519676. https://doi.org/10.1109/ACCESS.2024.3519676.GarciaM. D.RomeroA. M. (2024). “Survey on computational applications of tensor network simulations”. IEEE Access.10.1109/ACCESS.2024.3519676.https://doi.org/10.1109/ACCESS.2024.3519676.Open DOISearch in Google Scholar
T. Ayral, P. Besserve, D. Lacroix, E. A. R. Guzman (2023). “Quantum computing with and for many-body physics”. The European Physical Journal A 59, 227. https://doi.org/10.1140/epja/s10050–023-01141-1.AyralT.BesserveP.LacroixD.GuzmanE. A. R. (2023). “Quantum computing with and for many-body physics”. The European Physical Journal A.59.227.https://doi.org/10.1140/epja/s10050–023-01141-1.Search in Google Scholar
E. Moguel, J. R. and V. Garcia-Alonso (2022). “Quantum service-oriented computing: current landscape and challenges”. Software Quality Journal 30, 9831002. https://doi.org/10.1007/s11219-022-09589-y.MoguelE.J. R.Garcia-AlonsoV. (2022). “Quantum service-oriented computing: current landscape and challenges”. Software Quality Journal.30.9831002.https://doi.org/10.1007/s11219-022-09589-y.Search in Google Scholar
M. A. Serrano, J. A. Cruz-Lemus, R.-P. Castillo and M. Piattini (2022). “Quantum software components and platforms: overview and quality assessment”. ACM Computing Surveys 55: 8 1–31. https://doi.org/10.1145/3548679.SerranoM. A.Cruz-LemusJ. A.CastilloR.-P.PiattiniM. (2022). “Quantum software components and platforms: overview and quality assessment”. ACM Computing Surveys.55: 81–31.https://doi.org/10.1145/3548679.Search in Google Scholar
A. A. Khan, A. Ahmad, M. Waseem, P. Liang, M. Fahmideh, T. Mikkonen, and P. Abrahamsson (2023). “Software architecture for quantum computing systems-A systematic review”. Journal of Systems and Software, 201, 111682. https://doi.org/10.1016/j.jss.2023.111682.KhanA. A.AhmadA.WaseemM.LiangP.FahmidehM.MikkonenT.AbrahamssonP. (2023). “Software architecture for quantum computing systems-A systematic review”. Journal of Systems and Software.201.111682.https://doi.org/10.1016/j.jss.2023.111682.Search in Google Scholar
L. Jimnez-Navajas, F. Bhler, F. Leymann et al (2024). “Quantum software development: a survey”. Quantum Information and Computation 24: 7–8, 0609–0642. https://doi.org/10.26421/qic24.7-8-4.Jimnez-NavajasL.BhlerF.LeymannF. (2024). “Quantum software development: a survey”. Quantum Information and Computation.24: 7–8, 0609–0642 https://doi.org/10.26421/qic24.7-8-4.Search in Google Scholar
S. Garhwal, M. Ghorani, and A. Ahmad (2021). “Quantum programming language: A systematic review of research topic and top cited languages”. Archives of Computational Methods in Engineering, 28, 89–310. https://doi.org/10.1007/s11831-019-09372-6.GarhwalS.GhoraniM.AhmadA. (2021). “Quantum programming language: A systematic review of research topic and top cited languages”. Archives of Computational Methods in Engineering.28.89–310.https://doi.org/10.1007/s11831-019-09372-6.Search in Google Scholar
K. Dwivedi, M. Haghparast, T. Mikkonen (2024). “Quantum software engineering and quantum software development lifecycle: a survey”. Cluster Computing 27, 7127–7145. https://doi.org/10.1007/s10586-024-04362-1.DwivediK.HaghparastM.MikkonenT. (2024). “Quantum software engineering and quantum software development lifecycle: a survey”. Cluster Computing.27.7127–7145.https://doi.org/10.1007/s10586-024-04362-1.Search in Google Scholar
D. Cuomo, M. Caleffi (2020). “Towards a distributed quantum computing ecosystem”. IET Quantum Communication, 1: 1, 38. https://doi.org/10.1049/iet-qtc.2020.0002.CuomoD.CaleffiM. (2020). “Towards a distributed quantum computing ecosystem”. IET Quantum Communication.1: 1.38.https://doi.org/10.1049/iet-qtc.2020.0002.Search in Google Scholar
M. Caleffi, M. Amoretti, D. Ferrari et al (2024). “Distributed quantum computing: a survey”. Computer Networks 254, 110672. https://doi.org/10.1016/j.comnet.2024.110672.CaleffiM.AmorettiM.FerrariD. (2024). “Distributed quantum computing: a survey”. Computer Networks.254.110672.https://doi.org/10.1016/j.comnet.2024.110672.Search in Google Scholar
D. Barrala, F. J. Cardamab, G. Diaz et al (2024). “Review of distributed quantum computing. From single QPU to high performance quantum computing”. arXiv:2404.01265v1 https://doi.org/10.48550/arXiv.2404.01265.BarralaD.CardamabF. J.DiazG. (2024). “Review of distributed quantum computing. From single QPU to high performance quantum computing”. arXiv:2404.01265v1.https://doi.org/10.48550/arXiv.2404.01265.Search in Google Scholar
J. C. Boschero, N. M. P. Neumann, W. van der Schoot, T. Sijpesteijn, R. Wezeman (2024). “Distributed quantum computing: applications and challenges”. arXiv:2410.00609 https://doi.org/10.48550/arXiv.2410.00609.BoscheroJ. C.NeumannN. M. P.van der SchootW.SijpesteijnT.WezemanR. (2024). “Distributed quantum computing: applications and challenges”. arXiv:2410.00609.https://doi.org/10.48550/arXiv.2410.00609.Search in Google Scholar
G. M. Jones, H.-A. Jacobsen (2024). “Distributed quantum computing for chemical applications”. 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) https://doi.org/10.1109/QCE60285.2024.10270.JonesG. M.JacobsenH.-A. (2024). “Distributed quantum computing for chemical applications”. 2024 IEEE International Conference on Quantum Computing and Engineering (QCE).https://doi.org/10.1109/QCE60285.2024.10270.Search in Google Scholar
L. Pira and C. Ferrie (2023). “An invitation to distributed quantum neural networks”. Quantum Machine Intelligence https://doi.org/10.1007/s42484-023-00114-3.PiraL.FerrieC. (2023). “An invitation to distributed quantum neural networks”. Quantum Machine Intelligence.https://doi.org/10.1007/s42484-023-00114-3.Search in Google Scholar
H. T. Nguyen, P. Krishnan, D. Krishnaswamy et al (2024). “Quantum cloud computing: a review, open problems, and future directions”. arXiv:2404.11420 https://doi.org/10.48550/arXiv.2404.11420.NguyenH. T.KrishnanP.KrishnaswamyD. (2024). “Quantum cloud computing: a review, open problems, and future directions”. arXiv:2404.11420.https://doi.org/10.48550/arXiv.2404.11420.Search in Google Scholar
E. Moguel, J. Garcia-Alonso, J. M. Murillo (2024). “Development and deployment of quantum services”, in I. Exman et al. (eds), Quantum Software Springer. https://doi.org/10.1007/978-3-031-64136-7 8.MoguelE.Garcia-AlonsoJ.MurilloJ. M. (2024). “Development and deployment of quantum services”, in ExmanI. (eds), Quantum Software.Springer.https://doi.org/10.1007/978-3-031-64136-7 8.Search in Google Scholar
F. Phillipson (2023). “Quantum computing in telecommunication-a survey”. Mathematics 11: 15, 3423. https://doi.org/10.3390/math11153423.PhillipsonF. (2023). “Quantum computing in telecommunication-a survey”. Mathematics.11: 15.3423.https://doi.org/10.3390/math11153423.Search in Google Scholar
Y. Baseri, V. Chouhan, A. Ghorbani (2024). “Cybersecurity in the quantum era: Assessing the impact of quantum computing on infrastructure”. arXiv:2404.10659 https://doi.org/10.48550/arXiv.2404.10659.BaseriY.ChouhanV.GhorbaniA. (2024). “Cybersecurity in the quantum era: Assessing the impact of quantum computing on infrastructure”. arXiv:2404.10659.https://doi.org/10.48550/arXiv.2404.10659.Search in Google Scholar
H. Dutta, A. K. Bhuyan (2024). “Quantum communication: from fundamentals to recent trends, challenges and open problems”. arXiv:2406.04492 https://doi.org/10.48550/arXiv.2406.04492.DuttaH.BhuyanA. K. (2024). “Quantum communication: from fundamentals to recent trends, challenges and open problems”. arXiv:2406.04492.https://doi.org/10.48550/arXiv.2406.04492.Search in Google Scholar
Z. Li, K. Xue, J. Li, L. Chen, R. Li, Z. Wang, et al (2023). “Entanglement-assisted quantum networks: Mechanics, enabling technologies, challenges, and research directions”. IEEE Communications Surveys and Tutorials 25: 4, 2133–2189. https://doi.org/10.1109/COMST.2023.3294240.LiZ.XueK.LiJ.ChenL.LiR.WangZ. (2023). “Entanglement-assisted quantum networks: Mechanics, enabling technologies, challenges, and research directions”. IEEE Communications Surveys and Tutorials.25: 4.2133–2189.https://doi.org/10.1109/COMST.2023.3294240.Search in Google Scholar
M. Mehic et al (2023). “Quantum cryptography in 5G networks: A comprehensive overview”. IEEE Communications Surveys and Tutorials 26: 1, https://doi.org/10.1109/COMST.2023.3309051.MehicM. (2023). “Quantum cryptography in 5G networks: A comprehensive overview”. IEEE Communications Surveys and Tutorials.26: 1.https://doi.org/10.1109/COMST.2023.3309051.Search in Google Scholar
A. B. Popa, P. G. Popescu (2024). “The future of QKD networks”. arXiv:2407.00877 https://doi.org/10.48550/arXiv.2407.00877.PopaA. B.PopescuP. G. (2024). “The future of QKD networks”. arXiv:2407.00877.https://doi.org/10.48550/arXiv.2407.00877.Search in Google Scholar
A. Abane, M. Cubeddu, V. S. Mai, A. Battou (2025). “Entanglement routing in quantum networks: a comprehensive survey”. IEEE Transactions on Quantum Engineering 1–36. https://doi.org/10.1109/TQE.2025.3541123.AbaneA.CubedduM.MaiV. S.BattouA. (2025). “Entanglement routing in quantum networks: a comprehensive survey”. IEEE Transactions on Quantum Engineering.1–36.https://doi.org/10.1109/TQE.2025.3541123.Search in Google Scholar
L. Gyongyosi, S. Imre (2022). “Advances in the quantum internet”. Communications of the ACM 65: 8, 52–63. https://doi.org/10.1145/3524455.GyongyosiL.ImreS. (2022). “Advances in the quantum internet”. Communications of the ACM.65: 8.52–63.https://doi.org/10.1145/3524455.Search in Google Scholar
S. Wehner, D. Elkouss, R. Hanson (2018). “Quantum internet: A vision for the road ahead”. Science, 362, 6412. https://doi.org/10.1126/science.aam9288.WehnerS.ElkoussD.HansonR. (2018). “Quantum internet: A vision for the road ahead”. Science.362.6412.https://doi.org/10.1126/science.aam9288.Search in Google Scholar
Y. Li. et al (2024). “A survey of quantum internet protocols from a layered perspective”. IEEE Communications Surveys and Tutorials 26: 3. https://doi.org/10.1109/COMST.2024.3361662.LiY. (2024). “A survey of quantum internet protocols from a layered perspective”. IEEE Communications Surveys and Tutorials.26: 3 https://doi.org/10.1109/COMST.2024.3361662.Search in Google Scholar
J. Ang, G. Carini, Y. Chen, I. Chuang et al (2024). “Architectures for multinode superconducting quantum computers”. ACM Transactions on Quantum Computing 5: 3, 1–59. https://doi.org/10.1145/3674151.AngJ.CariniG.ChenY.ChuangI. (2024). “Architectures for multinode superconducting quantum computers”. ACM Transactions on Quantum Computing.5: 3.1–59.https://doi.org/10.1145/3674151.Search in Google Scholar
S. Barz et al (2012). “Demonstration of blind quantum computing”. Science 335: 6066, 303–308. https://doi.org/10.1126/science.1214707.BarzS. (2012). “Demonstration of blind quantum computing”. Science.335: 6066.303–308.https://doi.org/10.1126/science.1214707.Search in Google Scholar
S. Ruiting et al (2021). “Verifiable multiparty universal blind quantum computing in distributed network”s. Chinese Journal of Electronics 30: 4, 712–718. https://dx.doi.org/10.1049/cje.2021.05.013.RuitingS. (2021). “Verifiable multiparty universal blind quantum computing in distributed network”s. Chinese Journal of Electronics.30: 4.712–718.https://dx.doi.org/10.1049/cje.2021.05.013.Search in Google Scholar
A. Mantri, C. Perez-Delgado and J. Fitzsimons (2013). “Optimal blind quantum computation”. Physical Review Letters 111: 23, 230502. https://doi.org/10.1103/PhysRevLett.111.230502.MantriA.Perez-DelgadoC.FitzsimonsJ. (2013). “Optimal blind quantum computation”. Physical Review Letters.111: 23.230502.https://doi.org/10.1103/PhysRevLett.111.230502.Search in Google Scholar
J. I. Cirac, A. K. Ekert, S. F. Huelga, C. Macchiavello (1999). “Distributed quantum computation over noisy channels”. Physical Review A, 59, 4249–4254. https://doi.org/10.1103/PhysRevA.59.4249.CiracJ. I.EkertA. K.HuelgaS. F.MacchiavelloC. (1999). “Distributed quantum computation over noisy channels”. Physical Review A.59.4249–4254.https://doi.org/10.1103/PhysRevA.59.4249.Search in Google Scholar
D. Collins, N. Linden, S. Popescu (2001). “Nonlocal content of quantum operations”. Physical Review A 64, 7. https://doi.org/10.1103/PhysRevA.64.032302.CollinsD.LindenN.PopescuS. (2001). “Nonlocal content of quantum operations”. Physical Review A.64.7.https://doi.org/10.1103/PhysRevA.64.032302.Search in Google Scholar
J. Eisert, K. Jacobs, P. Papadopoulos, M. B. Plenio (2000). “Optimal local implementation of nonlocal quantum gates”. Physical Review A 62: 5. https://doi.org/10.1103/PhysRevA.62.052317.EisertJ.JacobsK.PapadopoulosP.PlenioM. B. (2000). “Optimal local implementation of nonlocal quantum gates”. Physical Review A.62: 5 https://doi.org/10.1103/PhysRevA.62.052317.Search in Google Scholar
C. Gidney, M. Ekera (2021). “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits”. Quantum 5. https://doi.org/10.22331/q-2021-04-15-433.GidneyC.EkeraM. (2021). “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits”. Quantum.5.https://doi.org/10.22331/q-2021-04-15-433.Search in Google Scholar
L. Gyongyosi, S. Imre (2018). “Multiple access multicarrier continuous-variable quantum key distribution”. Chaos, Solitons and Fractals 114, 491–505. https://doi.org/10.1016/j.chaos.2018.07.006.GyongyosiL.ImreS. (2018). “Multiple access multicarrier continuous-variable quantum key distribution”. Chaos, Solitons and Fractals.114.491–505.https://doi.org/10.1016/j.chaos.2018.07.006.Search in Google Scholar
L. Gyongyosi, S. Imre (2020). “Resource prioritization and balancing for the quantum internet”. Scientific Reports https://doi.org/DOI: 10.1038/s41598-020-78960-5.GyongyosiL.ImreS. (2020). “Resource prioritization and balancing for the quantum internet”. Scientific Reports https://doi.org/10.1038/s41598-020-78960-5.Open DOISearch in Google Scholar
L. Gyongyosi, S. Imre (2021). “Scalable distributed gate-model quantum computers”. Scientific Reports 11: 5172. https://doi.org/10.1038/s41598-020-76728-5.GyongyosiL.ImreS. (2021). “Scalable distributed gate-model quantum computers”. Scientific Reports.11: 5172.https://doi.org/10.1038/s41598-020-76728-5.Search in Google Scholar
H. Li, D. Qiu, L. Luo (2023). “Distributed exact quantum algorithms for Deutsch-Jozsa problem”. arXiv.2303.10663. https://doi.org/10.48550/arXiv.2303.10663.LiH.QiuD.LuoL. (2023). “Distributed exact quantum algorithms for Deutsch-Jozsa problem”. arXiv.2303.10663.https://doi.org/10.48550/arXiv.2303.10663.Search in Google Scholar
N. M. Neumann, R. van Houte, T. Attema (2020). “Imperfect distributed quantum phase estimation”. Computational Science-ICCS 2020: 12142 of LNCS, Springer, pp. 605–615. https://doi.org/10.1007/978-3-030-50433-5 46NeumannN. M.van HouteR.AttemaT. (2020). “Imperfect distributed quantum phase estimation”. Computational Science-ICCS, 2020: 12142 of LNCS.Springer pp. 605–615.https://doi.org/10.1007/978-3-030-50433-5 46Search in Google Scholar
Y. Shi, T. Nguyen, S. Stein, T. Stavenger, M. Warner, M. Roetteler et al (2023). “A reference implementation for a quantum message passing interface”. Proc. of the SC23 Workshops of The Int. Conf. on High Performance Computing Network, Storage, and Analysis, ACM, New York, pp. 1420–1425. https://doi.org/10.1145/3624062.3624212.ShiY.NguyenT.SteinS.StavengerT.WarnerM.RoettelerM. (2023). “A reference implementation for a quantum message passing interface”. Proc. of the SC23 Workshops of The Int. Conf. on High Performance Computing, Network, Storage, and Analysis.ACM.New York pp. 1420–1425.https://doi.org/10.1145/3624062.3624212.Search in Google Scholar
J. Tan, L. Xiao, D. Qiu, L. Luo, P. Mateus (2022). “Distributed quantum algorithm for Simon’s problem”. Physical Review A 106: 3. https://doi.org/10.1103/PhysRevA.106.032417.TanJ.XiaoL.QiuD.LuoL.MateusP. (2022). “Distributed quantum algorithm for Simon’s problem”. Physical Review A.106: 3.https://doi.org/10.1103/PhysRevA.106.032417.Search in Google Scholar
R. Van Meter, W. J. Munro, K. Nemoto, K. M. Itoh (2008). “Arithmetic on a distributed-memory quantum multicomputer”. ACM Journal on Emerging Technologies in Computing Systems, 3: 4. https://doi.org/10.1145/1324177.1324179.Van MeterR.MunroW. J.NemotoK.ItohK. M. (2008). “Arithmetic on a distributed-memory quantum multicomputer”. ACM Journal on Emerging Technologies in Computing Systems.3: 4.https://doi.org/10.1145/1324177.1324179.Search in Google Scholar
L. Xiao, D. Qiu, L. Luo, P. Mateus (2023). “Distributed quantum-classical hybrid Shor’s algorithm”. arXiv.2304.12100 https://doi.org/10.48550/arXiv.2304.12100.XiaoL.QiuD.LuoL.MateusP. (2023). “Distributed quantum-classical hybrid Shor’s algorithm”. arXiv.2304.12100.https://doi.org/10.48550/arXiv.2304.12100.Search in Google Scholar
Z. Zhang and Q. Zhuang (2021). “Distributed quantum sensing”. Quantum Science and Technology 6: 4, 043001. https://doi.org/10.1088/2058-9565/abd4c3.ZhangZ.ZhuangQ. (2021). “Distributed quantum sensing”. Quantum Science and Technology.6: 4.043001.https://doi.org/10.1088/2058-9565/abd4c3.Search in Google Scholar
C. L. Degen, F. Reinhard, and P. Cappellaro (2017). “Quantum sensing”. Reviews of Modern Physics, 89: 3, 035002. https://doi.org/10.1103/RevModPhys.89.035002.DegenC. L.ReinhardF.CappellaroP. (2017). “Quantum sensing”. Reviews of Modern Physics.89: 3.035002.https://doi.org/10.1103/RevModPhys.89.035002.Search in Google Scholar
X. Zhou, D. Qiu, L. Luo (2023). “Distributed Bernstein-Vazirani algorithm”. Physica A: Statistical Mechanics and its Applications 629, 129209. https://doi.org/10.1016/j.physa.2023.129209.ZhouX.QiuD.LuoL. (2023). “Distributed Bernstein-Vazirani algorithm”. Physica A: Statistical Mechanics and its Applications.629.129209.https://doi.org/10.1016/j.physa.2023.129209.Search in Google Scholar
X. Zhou, D. Qiu, L. Luo (2023). “Distributed exact Grovers algorithm”. Frontiers of Physics, 18: 5, 1–25. https://doi.org/10.1007/s11467-023-1327-x.ZhouX.QiuD.LuoL. (2023). “Distributed exact Grovers algorithm”. Frontiers of Physics.18: 5.1–25.https://doi.org/10.1007/s11467-023-1327-x.Search in Google Scholar
B. He, D. Zhang, S. W. Loke, S. Lin, L. Lu (2024). “Building a hierarchical architecture and communication model for the quantum internet”. IEEE Journal on Selected Areas in Communications 42, 7. https://doi.org/10.1109/JSAC.2024.3380103.HeB.ZhangD.LokeS. W.LinS.LuL. (2024). “Building a hierarchical architecture and communication model for the quantum internet”. IEEE Journal on Selected Areas in Communications.42.7.https://doi.org/10.1109/JSAC.2024.3380103.Search in Google Scholar
W. Kozlowski, S. Wehner, R. V. Meter, B. Rijsman, A. S. Cacciapuoti, M. Caleffi et al. (2023). RFC 9340: Architectural Principles for a Quantum Internet Internet Research Task Force (IRTF). https://doi.org/10.17487/RFC9340.KozlowskiW.WehnerS.MeterR. V.RijsmanB.CacciapuotiA. S.CaleffiM. (2023). RFC 9340: Architectural Principles for a Quantum Internet.Internet Research Task Force (IRTF).https://doi.org/10.17487/RFC9340.Search in Google Scholar
J. Roffe (2019). “Quantum error correction: an introductory guide”. Contemporary Physics 60, 3. https://doi.org/10.1080/00107514.2019.1667078.RoffeJ. (2019). “Quantum error correction: an introductory guide”. Contemporary Physics.60.3.https://doi.org/10.1080/00107514.2019.1667078.Search in Google Scholar
A. Paler, S. J. Devitt (2015). “An introduction to fault-tolerant quantum computing”. DAC’15 Proceedings of the 52nd Annual Design Automation Conference 60. https://doi.org/10.1145/2744769.2747911.PalerA.DevittS. J. (2015). “An introduction to fault-tolerant quantum computing”. DAC’15 Proceedings of the 52nd Annual Design Automation Conference.60.https://doi.org/10.1145/2744769.2747911.Search in Google Scholar
K. Heshami, D. G. England, P. C. Humphreys (2016). “Quantum memories: emerging applications and recent advances”. Journal of Modern Optics, 63, S3, S42–S65. https://doi.org/10.1080/09500340.2016.1148212.HeshamiK.EnglandD. G.HumphreysP. C. (2016). “Quantum memories: emerging applications and recent advances”. Journal of Modern Optics.63.S3.S42–S65.https://doi.org/10.1080/09500340.2016.1148212.Search in Google Scholar
B. M. Terhal (2015). “Quantum error correction for quantum memories”. Reviews of Modern Physics, 87, 307. https://doi.org/10.1103/RevModPhys.87.307.TerhalB. M. (2015). “Quantum error correction for quantum memories”. Reviews of Modern Physics.87.307.https://doi.org/10.1103/RevModPhys.87.307.Search in Google Scholar
S. Bravyi, D. Gosset, and R. Konig (2018). “Quantum advantage with shallow circuits”. Science, 362, 308. https://doi.org/10.1126/science.aar3106.BravyiS.GossetD.KonigR. (2018). “Quantum advantage with shallow circuits”. Science.362.308.https://doi.org/10.1126/science.aar3106.Search in Google Scholar
J. D. Hidary (2021). Quantum Computing: an Applied Approach Springer, ISBN-10: 3030832732.HidaryJ. D. (2021). Quantum Computing: an Applied Approach.Springer ISBN-10: 3030832732.Search in Google Scholar
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien (2010). “Quantum computers”. Nature 464: 7285, 4553. https://doi.org/10.1038/nature08812.LaddT. D.JelezkoF.LaflammeR.NakamuraY.MonroeC.O’BrienJ. L. (2010). “Quantum computers”. Nature.464: 7285.4553.https://doi.org/10.1038/nature08812.Search in Google Scholar
M. AbuGhanem (2024). “Photonic quantum computers”. arXiv:2409.08229 https://doi.org/10.48550/arXiv.2409.08229.AbuGhanemM. (2024). “Photonic quantum computers”. arXiv:2409.08229.https://doi.org/10.48550/arXiv.2409.08229.Search in Google Scholar
M. Kjaergaard, M. E. Schwartz, J. Braumuller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver (2020). “Superconducting qubits: Current state of play”. Annual Review of Condensed Matter Physics 11, 369395. https://doi.org/10.1146/annurev-conmatphys-031119-050605.KjaergaardM.SchwartzM. E.BraumullerJ.KrantzP.WangJ. I.-J.GustavssonS.OliverW. D. (2020). “Superconducting qubits: Current state of play”. Annual Review of Condensed Matter Physics.11.369395.https://doi.org/10.1146/annurev-conmatphys-031119-050605.Search in Google Scholar
F. Arute et al (2019). “Quantum supremacy using a programmable superconducting processor”. Nature 574. https://doi.org/10.1038/s41586-019-1666-5.AruteF. (2019). “Quantum supremacy using a programmable superconducting processor”. Nature.574.https://doi.org/10.1038/s41586-019-1666-5.Search in Google Scholar
R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Lavieville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer et al (2016). “A cmos silicon spin qubit”. Nature Communications 7: 1, 13575. https://doi.org/10.1038/ncomms13575.MaurandR.JehlX.Kotekar-PatilD.CornaA.BohuslavskyiH.LavievilleR.HutinL.BarraudS.VinetM.SanquerM. (2016). “A cmos silicon spin qubit”. Nature Communications.7: 1.13575.https://doi.org/10.1038/ncomms13575.Search in Google Scholar
L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and C. Jurczak (2020). “Quantum computing with neutral atoms”. Quantum 4: 327. https://doi.org/10.22331/q-2020-09-21-327.HenrietL.BeguinL.SignolesA.LahayeT.BrowaeysA.ReymondG.-O.JurczakC. (2020). “Quantum computing with neutral atoms”. Quantum.4: 327.https://doi.org/10.22331/q-2020-09-21-327.Search in Google Scholar
R.-Y. Gong, Z.-Y. He, C.-H. Yu, G.-F. Zhang, F. Nori, Z.-L. Xiang (2024). “Tunable quantum router with giant atoms, implementing quantum gates, teleportation, non-reciprocity, and circulators”. arXiv:2411.19307 https://doi.org/10.48550/arXiv.2411.19307.GongR.-Y.HeZ.-Y.YuC.-H.ZhangG.-F.NoriF.XiangZ.-L. (2024). “Tunable quantum router with giant atoms, implementing quantum gates, teleportation, non-reciprocity, and circulators”. arXiv:2411.19307.https://doi.org/10.48550/arXiv.2411.19307.Search in Google Scholar
C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage (2019). “Trapped-ion quantum computing: Progress and challenges”. Applied Physics Reviews 6: 2, 021314. https://doi.org/10.1063/1.5088164.BruzewiczC. D.ChiaveriniJ.McConnellR.SageJ. M. (2019). “Trapped-ion quantum computing: Progress and challenges”. Applied Physics Reviews.6: 2.021314.https://doi.org/10.1063/1.5088164.Search in Google Scholar
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma (2008). “Non-abelian anyons and topological quantum computation”. Reviews of Modern Physics 80: 3, 1083. https://doi.org/10.1103/RevModPhys.80.1083.NayakC.SimonS. H.SternA.FreedmanM.SarmaS. D. (2008). “Non-abelian anyons and topological quantum computation”. Reviews of Modern Physics.80: 3.1083.https://doi.org/10.1103/RevModPhys.80.1083.Search in Google Scholar
S. Pezzagna, J. Meijer (2021). “Quantum computer based on color centers in diamond”. Applied Physics Reviews, 8, 011308. https://doi.org/10.1063/5.0007444.PezzagnaS.MeijerJ. (2021). “Quantum computer based on color centers in diamond”. Applied Physics Reviews.8.011308.https://doi.org/10.1063/5.0007444.Search in Google Scholar
L. M. K. Vandersypen et al (2001). “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance”. Nature, 414, 883–887. https://doi.org/10.1038/414883a.VandersypenL. M. K. (2001). “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance”. Nature.414.883–887.https://doi.org/10.1038/414883a.Search in Google Scholar
L. M. K. Vandersypen, I. L. Chuang (2005). “NMR techniques for quantum control and computation”. Reviews of Modern Physics 76, 1037. https://doi.org/10.1103/RevModPhys.76.1037.VandersypenL. M. K.ChuangI. L. (2005). “NMR techniques for quantum control and computation”. Reviews of Modern Physics.76.1037.https://doi.org/10.1103/RevModPhys.76.1037.Search in Google Scholar
N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, Y. Yamamoto (2012). “Layered architecture for quantum computing”. Physical Review X 2, 031007. https://doi.org/10.1103/PhysRevX.2.031007.JonesN. C.Van MeterR.FowlerA. G.McMahonP. L.KimJ.LaddT. D.YamamotoY. (2012). “Layered architecture for quantum computing”. Physical Review X.2.031007.https://doi.org/10.1103/PhysRevX.2.031007.Search in Google Scholar
S. Rodrigo, S. Abadal, E. Alarcon et al (2021). “On double full-stack communication-enabled architectures for multicore quantum computers”. IEEE Micro 41, 4856. https://doi.org/10.1109/MM.2021.3092706.RodrigoS.AbadalS.AlarconE. (2021). “On double full-stack communication-enabled architectures for multicore quantum computers”. IEEE Micro.41.4856.https://doi.org/10.1109/MM.2021.3092706.Search in Google Scholar
R. Van Meter (2014). Quantum Networking John Wiley and Sons Ltd.Van MeterR. (2014). Quantum Networking.John Wiley and Sons Ltd.Search in Google Scholar
J. Illiano, M. Caleffi, A. Manzalini, A. S. Cacciapuoti (2022). “Quantum Internet protocol stack: A comprehensive survey”. Computer Networks 213, 109092. https://doi.org/10.1016/j.comnet.2022.109092.IllianoJ.CaleffiM.ManzaliniA.CacciapuotiA. S. (2022). “Quantum Internet protocol stack: A comprehensive survey”. Computer Networks.213.109092.https://doi.org/10.1016/j.comnet.2022.109092.Search in Google Scholar
Z. Li, K. Xue, J. Li, N. Yu, J. Liu, D. S. L. Wei et al (2021). “Building a large scale and wide-area quantum Internet based on an OSI-alike model”. China Communications 18: 10, 1–14. https://doi.org/10.23919/JCC.2021.10.001.LiZ.XueK.LiJ.YuN.LiuJ.WeiD. S. L. (2021). “Building a large scale and wide-area quantum Internet based on an OSI-alike model”. China Communications.18: 10.1–14.https://doi.org/10.23919/JCC.2021.10.001.Search in Google Scholar
A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpundefineddek, M. Pompili et al (2019). “A link layer protocol for quantum networks”, in Proceedings of the ACM Special Interest Group on Data Communication ACM, New York, 159–173. https://doi.org/10.1145/3341302.3342070.DahlbergA.SkrzypczykM.CoopmansT.WubbenL.RozpundefineddekF.PompiliM. (2019). “A link layer protocol for quantum networks”, in Proceedings of the ACM Special Interest Group on Data Communication.ACM.New York.159–173.https://doi.org/10.1145/3341302.3342070.Search in Google Scholar
A. Pirker, W. Dur (2019). “A quantum network stack and protocols for reliable entanglement-based networks”. New Journal of Physics, 21, 3. https://doi.org/10.1088/1367-2630/ab05f7.PirkerA.DurW. (2019). “A quantum network stack and protocols for reliable entanglement-based networks”. New Journal of Physics.21.3.https://doi.org/10.1088/1367-2630/ab05f7.Search in Google Scholar
R. V. Meter, J. Touch (2013). “Designing quantum repeater networks. IEEE Communications Magazine, 51: 8, 64–71. https://doi.org/10.1109/MCOM.2013.6576340.MeterR. V.TouchJ. (2013). “Designing quantum repeater networks.IEEE Communications Magazine.51: 8.64–71.https://doi.org/10.1109/MCOM.2013.6576340.Search in Google Scholar
R. Van Meter, R. Satoh, N. Benchasattabuse, K. Teramoto, T. Matsuo, M. Hajdusek et al. (2022). “A quantum Internet architecture”. 2022 IEEE Int. Conf. on Quantum Computing and Engineering (QCE) 341–352. https://doi.org/10.1109/QCE53715.2022.00055.Van MeterR.SatohR.BenchasattabuseN.TeramotoK.MatsuoT.HajdusekM. (2022). “A quantum Internet architecture”. 2022 IEEE Int. Conf. on Quantum Computing and Engineering (QCE).341–352.https://doi.org/10.1109/QCE53715.2022.00055.Search in Google Scholar
J. Preskill (2018). “Quantum Computing in the NISQ era and beyond”. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79.PreskillJ. (2018). “Quantum Computing in the NISQ era and beyond”. Quantum.2.79.https://doi.org/10.22331/q-2018-08-06-79.Search in Google Scholar
A. W. Harrow and A. Montanaro (2017). “Quantum computational supremacy”. Nature 549, 203–209. https://doi.org/10.1038/nature23458.HarrowA. W.MontanaroA. (2017). “Quantum computational supremacy”. Nature.549.203–209.https://doi.org/10.1038/nature23458.Search in Google Scholar
S. Aaronson and L. Chen (2017). “Complexity-theoretic foundations of quantum supremacy experiments”, in Proceedings of the 32nd Computational Complexity Conference CCC ’17, pp. 22:1–22:67. https://doi.org/10.4230/LIPIcs.CCC.2017.22.AaronsonS.ChenL. (2017). “Complexity-theoretic foundations of quantum supremacy experiments”, in Proceedings of the 32nd Computational Complexity Conference, CCC ‘17 pp. 22:1–22:67.https://doi.org/10.4230/LIPIcs.CCC.2017.22.Search in Google Scholar
E. Farhi, J. Goldstone, S. Gutmann and H. Neven (2017). “Quantum algorithms for fixed qubit architectures”. arXiv:1703.06199v1 https://doi.org/10.48550/arXiv.1703.06199.FarhiE.GoldstoneJ.GutmannS.NevenH. (2017). “Quantum algorithms for fixed qubit architectures”. arXiv:1703.06199v1.https://doi.org/10.48550/arXiv.1703.06199.Search in Google Scholar
M. Mastriani (2024). “Explaining the results of quantum mechanics via entanglement closed loop”. Optical and Quantum Electronics 56, 801. https://doi.org/10.1007/s11082-024-06393-9.MastrianiM. (2024). “Explaining the results of quantum mechanics via entanglement closed loop”. Optical and Quantum Electronics.56.801.https://doi.org/10.1007/s11082-024-06393-9.Search in Google Scholar
Y. Alexeev et al (2019). “Quantum computer systems for scientific discovery”. PRX Quantum 2, 017001. https://doi.org/10.1103/PRXQuantum.2.017001.AlexeevY. (2019). “Quantum computer systems for scientific discovery”. PRX Quantum.2.017001.https://doi.org/10.1103/PRXQuantum.2.017001.Search in Google Scholar
M. Loncar et al (2019). “Development of quantum interconnects for next-generation information technologies”. PRX Quantum 2, 017002. https://doi.org/10.1103/PRXQuantum.2.017002LoncarM. (2019). “Development of quantum interconnects for next-generation information technologies”. PRX Quantum.2.017002.https://doi.org/10.1103/PRXQuantum.2.017002Search in Google Scholar
B. Foxen et al (2020). “Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms”. Physical Review Letters 125, 120504. https://doi.org/10.1103/PhysRevLett.125.120504.FoxenB. (2020). “Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms”. Physical Review Letters.125.120504.https://doi.org/10.1103/PhysRevLett.125.120504.Search in Google Scholar
A. Ajagekar, T. Humble, and F. You (2020). “Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems”. Computers and Chemical Engineering 132, 106630. https://doi.org/10.1016/j.compchemeng.2019.106630.AjagekarA.HumbleT.YouF. (2020). “Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems”. Computers and Chemical Engineering.132.106630.https://doi.org/10.1016/j.compchemeng.2019.106630.Search in Google Scholar
A. Ajagekar and F. You (2019). “Quantum computing for energy systems optimization: Challenges and opportunities”. Energy 179, 76–89. https://doi.org/10.1016/j.energy.2019.04.186.AjagekarA.YouF. (2019). “Quantum computing for energy systems optimization: Challenges and opportunities”. Energy.179.76–89.https://doi.org/10.1016/j.energy.2019.04.186.Search in Google Scholar
M. Harrigan et al (2020). “Quantum approximate optimization of non-planar using eigen energies graph problems on a planar superconducting processor”. Nature Physics 17, 332–336. https://doi.org/10.1038/s41567-020-01105-y.HarriganM. (2020). “Quantum approximate optimization of non-planar using eigen energies graph problems on a planar superconducting processor”. Nature Physics.17.332–336.https://doi.org/10.1038/s41567-020-01105-y.Search in Google Scholar
N. Rubin et al (2020). “Hartree-Fock on a superconducting qubit quantum computer”. Science 69: 6507, 1084–1089. https://doi.org/10.1126/science.abb9811.RubinN. (2020). “Hartree-Fock on a superconducting qubit quantum computer”. Science.69: 6507.1084–1089.https://doi.org/10.1126/science.abb9811.Search in Google Scholar
E. Farhi, J. Goldstone and S. Gutmann (2014). “A quantum approximate optimization algorithm”. arXiv:1411.4028v1 https://doi.org/10.48550/arXiv.1411.4028.FarhiE.GoldstoneJ.GutmannS. (2014). “A quantum approximate optimization algorithm”. arXiv:1411.4028v1.https://doi.org/10.48550/arXiv.1411.4028.Search in Google Scholar
E. Farhi, J. Goldstone, S. Gutmann and L. Zhou, L (2019). “The quantum approximate optimization algorithm and the Sherrington-Kirkpatrick model at infinite size”. Quantum 6, 759. https://doi.org/10.22331/q-2022-07-07-759.FarhiE.GoldstoneJ.GutmannS.ZhouL.L (2019). “The quantum approximate optimization algorithm and the Sherrington-Kirkpatrick model at infinite size”. Quantum.6.759.https://doi.org/10.22331/q-2022-07-07-759.Search in Google Scholar
E. Farhi and H. Neven (2018). “Classification with quantum neural networks on near term processors”. arXiv:1802.06002v1 https://doi.org/10.48550/arXiv.1802.06002.FarhiE.NevenH. (2018). “Classification with quantum neural networks on near term processors”. arXiv:1802.06002v1.https://doi.org/10.48550/arXiv.1802.06002.Search in Google Scholar
I. Sax et al (2020). “Approximate approximation on a quantum annealer”. CF ‘20: Proceedings of the 17th ACM International Conference on Computing Frontiers pp. 108–117. https://doi.org/10.1145/3387902.3392635.SaxI. (2020). “Approximate approximation on a quantum annealer”. CF ‘20: Proceedings of the 17th ACM International Conference on Computing Frontiers pp. 108–117.https://doi.org/10.1145/3387902.3392635.Search in Google Scholar
K. A. Brown and T. Roser (2020). “Towards storage rings as quantum computers”. Physical Review Accelerators and Beams 23, 054701. https://doi.org/10.1103/PhysRevAccelBeams.24.049901.BrownK. A.RoserT. (2020). “Towards storage rings as quantum computers”. Physical Review Accelerators and Beams.23.054701.https://doi.org/10.1103/PhysRevAccelBeams.24.049901.Search in Google Scholar
J. Bae, P. M. Alsing, D. Ahn et al (2020). “Quantum circuit optimization using quantum Karnaugh map”. Scientific Reports, 10, 15651, https://doi.org/10.1038/s41598-020-72469-7.BaeJ.AlsingP. M.AhnD. (2020). “Quantum circuit optimization using quantum Karnaugh map”. Scientific Reports.10.15651.https://doi.org/10.1038/s41598-020-72469-7.Search in Google Scholar
S. Li et al (2020). “Programmable unitary operations for orbital angular momentum encoded states”. National Science Open 1: 2, 20220019. https://doi.org/10.1360/nso/20220019.LiS. (2020). “Programmable unitary operations for orbital angular momentum encoded states”. National Science Open.1: 2.20220019.https://doi.org/10.1360/nso/20220019.Search in Google Scholar
S. Bugu, F. Ozaydin and T. Kodera (2020). “Surpassing the classical limit in magic square game with distant quantum dots coupled to optical cavities”. Scientific Reports, DOI: https://doi.org/10.1038/s41598-020-79295-x.BuguS.OzaydinF.KoderaT. (2020). “Surpassing the classical limit in magic square game with distant quantum dots coupled to optical cavities”. Scientific Reports.https://doi.org/10.1038/s41598-020-79295-x.Search in Google Scholar
A. Teplukhin, B. Kendrick and D. Babikov (2020). “Solving complex eigenvalue problems on a quantum annealer with applications to quantum scattering resonances”. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D0CP04272B.TeplukhinA.KendrickB.BabikovD. (2020). “Solving complex eigenvalue problems on a quantum annealer with applications to quantum scattering resonances”. Physical Chemistry Chemical Physics.https://doi.org/10.1039/D0CP04272B.Search in Google Scholar
S. Lloyd (2018). “Quantum approximate optimization is computationally universal”. arXiv:1812.11075 https://doi.org/10.48550/arXiv.1812.11075.LloydS. (2018). “Quantum approximate optimization is computationally universal”. arXiv:1812.11075.https://doi.org/10.48550/arXiv.1812.11075.Search in Google Scholar
Q. Zhu. et al (2022). “Quantum computational advantage via 60-qubit 24-cycle random circuit sampling”. Science Bulletin 67: 3, 240–245. https://doi.org/10.1016/j.scib.2021.10.017.ZhuQ. (2022). “Quantum computational advantage via 60-qubit 24-cycle random circuit sampling”. Science Bulletin.67: 3.240–245.https://doi.org/10.1016/j.scib.2021.10.017.Search in Google Scholar
S. Aaronson, A. Arkhipov (2013). “The computational complexity of linear optics”. Theory of Computing 9: 4, 143–252. https://doi.org/10.1145/1993636.1993682.AaronsonS.ArkhipovA. (2013). “The computational complexity of linear optics”. Theory of Computing.9: 4.143–252.https://doi.org/10.1145/1993636.1993682.Search in Google Scholar
H-S. Zhong et al (2020). “Quantum computational advantage using photons”. Science 370: 6523, 1460–1463. https://doi.org/10.1126/science.abe8770.ZhongH-S. (2020). “Quantum computational advantage using photons”. Science.370: 6523.1460–1463.https://doi.org/10.1126/science.abe8770.Search in Google Scholar
L. S. Madsen et al (2022). “Quantum computational advantage with a programmable photonic processor”. Nature 606: 7912, 75–81. https://doi.org/10.1038/s41586-022-04725-x.MadsenL. S. (2022). “Quantum computational advantage with a programmable photonic processor”. Nature.606: 7912.75–81.https://doi.org/10.1038/s41586-022-04725-x.Search in Google Scholar
M. Reiher, N. Wiebe, K. M. Svore et al (2017). “Elucidating reaction mechanisms on quantum computers”. Proceedings of the National Academy of Sciences, 114 7555–7560. https://doi.org/10.1073/pnas.1619152114.ReiherM.WiebeN.SvoreK. M. (2017). “Elucidating reaction mechanisms on quantum computers”. Proceedings of the National Academy of Sciences.114.7555–7560.https://doi.org/10.1073/pnas.1619152114.Search in Google Scholar
S. Mandra and H. G. Katzgraber (2018). “A deceptive step towards quantum speedup detection”. Quantum Science Technology 3 04LT. https://doi.org/10.1088/2058-9565/aac8b2.MandraS.KatzgraberH. G. (2018). “A deceptive step towards quantum speedup detection”. Quantum Science Technology.3.04LT.https://doi.org/10.1088/2058-9565/aac8b2.Search in Google Scholar
V. Moret-Bonillo (2015). “Can artificial intelligence benefit from quantum computing?” Progress in Artificial Intelligence 3 89–105. https://doi.org/10.1007/s13748-014-0059-0.Moret-BonilloV. (2015). “Can artificial intelligence benefit from quantum computing?” Progress in Artificial Intelligence.3.89–105.https://doi.org/10.1007/s13748-014-0059-0.Search in Google Scholar
T. Yamakawa and M. Zhandry (2022). “Verifiable quantum advantage without structure”, in 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) 69–74. https://doi.org/10.1145/3658665.YamakawaT.ZhandryM. (2022). “Verifiable quantum advantage without structure”, in 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).69–74.https://doi.org/10.1145/3658665.Search in Google Scholar
T. F. Ronnow, Z. Wang, J. Job et al (2014). “Defining and detecting quantum speedup”. Science 345, 420–424. https://doi.org/10.1126/science.1252319.RonnowT. F.WangZ.JobJ. (2014). “Defining and detecting quantum speedup”. Science.345.420–424.https://doi.org/10.1126/science.1252319.Search in Google Scholar
S. Aaronson (2015). “Quantum machine learning algorithms: Read the fine print”, Nature Physics, 11, 291–293. https://doi.org/10.1038/nphys3272.AaronsonS. (2015). “Quantum machine learning algorithms: Read the fine print”, Nature Physics.11.291–293.https://doi.org/10.1038/nphys3272.Search in Google Scholar
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, et al (2022). “Noisy intermediate-scale quantum (NISQ) algorithms”. Reviews of Modern Physics, 94, 015004. https://doi.org/10.1103/RevModPhys.94.015004.BhartiK.Cervera-LiertaA.KyawT. H.HaugT.Alperin-LeaS.AnandA.DegrooteM.HeimonenH.KottmannJ. S.MenkeT. (2022). “Noisy intermediate-scale quantum (NISQ) algorithms”. Reviews of Modern Physics.94.015004.https://doi.org/10.1103/RevModPhys.94.015004.Search in Google Scholar
P. W. Shor (1994). “Algorithms for quantum computation: discrete logarithms and factoring”, in Proceedings 35th Annual Symposium on Foundations of Computer Science, 124–134. https://doi.org/10.1109/SFCS.1994.365700.ShorP. W. (1994). “Algorithms for quantum computation: discrete logarithms and factoring”, in Proceedings 35th Annual Symposium on Foundations of Computer Science.124–134.https://doi.org/10.1109/SFCS.1994.365700.Search in Google Scholar
V. S. Denchev, S. Boixo, S. V. Isakov et al (2016). “What is the computational value of finite-range tunneling?” Physical Review X, 6, 1–17. https://doi.org/10.1103/PhysRevX.6.031015.DenchevV. S.BoixoS.IsakovS. V. (2016). “What is the computational value of finite-range tunneling?” Physical Review X.6.1–17.https://doi.org/10.1103/PhysRevX.6.031015.Search in Google Scholar
P. J. J. O’Malley et al (2016). “Scalable quantum simulation of molecular energies”. Physical Review X 6, 031007. https://doi.org/10.1103/PhysRevX.6.031007.O’MalleyP. J. J. (2016). “Scalable quantum simulation of molecular energies”. Physical Review X.6.031007.https://doi.org/10.1103/PhysRevX.6.031007.Search in Google Scholar
F. Arute et al (2020). “Observation of separated dynamics of charge and spin in the Fermi-Hubbard model”. arXiv:2010.07965 https://doi.org/10.48550/arXiv.2010.07965.AruteF. (2020). “Observation of separated dynamics of charge and spin in the Fermi-Hubbard model”. arXiv:2010.07965.https://doi.org/10.48550/arXiv.2010.07965.Search in Google Scholar
I. Aleiner et al (2020). “Accurately computing electronic properties of materials using eigenenergies”. arXiv:2012.00921 https://doi.org/10.1038/s41586-021-03576-2.AleinerI. (2020). “Accurately computing electronic properties of materials using eigenenergies”. arXiv:2012.00921.https://doi.org/10.1038/s41586-021-03576-2.Search in Google Scholar
E. Farhi, D. Gamarnik and S. Gutmann (2020). “The quantum approximate optimization algorithm needs to see the whole graph: a typical case”. arXiv:2004.09002v1 https://doi.org/10.48550/arXiv.2004.09002.FarhiE.GamarnikD.GutmannS. (2020). “The quantum approximate optimization algorithm needs to see the whole graph: a typical case”. arXiv:2004.09002v1.https://doi.org/10.48550/arXiv.2004.09002.Search in Google Scholar
E. Farhi, D. Gamarnik and S. Gutmann (2020). “The quantum approximate optimization algorithm needs to see the whole graph: worst case examples”. arXiv:2005.08747 https://doi.org/10.48550/arXiv.2005.08747.FarhiE.GamarnikD.GutmannS. (2020). “The quantum approximate optimization algorithm needs to see the whole graph: worst case examples”. arXiv:2005.08747.https://doi.org/10.48550/arXiv.2005.08747.Search in Google Scholar
A. Peruzzo et al (2014). “A variational eigenvalue solver on a photonic quantum processor”. Nature Communications, 5, 4213. https://doi.org/10.1038/ncomms5213.PeruzzoA. (2014). “A variational eigenvalue solver on a photonic quantum processor”. Nature Communications.5.4213.https://doi.org/10.1038/ncomms5213.Search in Google Scholar
D. Wecker, M. B. Hastings, and M. Troyer (2015). “Progress towards practical quantum variational algorithms”. Physical Review A, 92, 042303. https://doi.org/10.1103/PhysRevA.92.042303.WeckerD.HastingsM. B.TroyerM. (2015). “Progress towards practical quantum variational algorithms”. Physical Review A.92.042303.https://doi.org/10.1103/PhysRevA.92.042303.Search in Google Scholar
J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik (2016). “The theory of variational hybrid quantum-classical algorithms”. New Journal of Physics, 18. https://doi.org/10.1088/1367-2630/18/2/023023.McCleanJ. R.RomeroJ.BabbushR.Aspuru-GuzikA. (2016). “The theory of variational hybrid quantum-classical algorithms”. New Journal of Physics.18.https://doi.org/10.1088/1367-2630/18/2/023023.Search in Google Scholar
X. Yuan et al (2019). “Theory of variational quantum simulation”. Quantum, 3, 191. https://doi.org/10.22331/q-2019-10-07-191.YuanX. (2019). “Theory of variational quantum simulation”. Quantum.3.191.https://doi.org/10.22331/q-2019-10-07-191.Search in Google Scholar
A. Kardashin et al (2021). “Benchmarking variational quantum simulation against an exact solution”, in 023 IEEE International Conference on Quantum Computing and Engineering (QCE) Bellevue, WA, USA, 518–523. https://doi.org/10.1109/QCE57702.2023.00065.KardashinA. (2021). “Benchmarking variational quantum simulation against an exact solution”, in 023 IEEE International Conference on Quantum Computing and Engineering (QCE).Bellevue, WA, USA.518–523.https://doi.org/10.1109/QCE57702.2023.00065.Search in Google Scholar
K. Mitarai and K. Fujii (2021). “Constructing a virtual two-qubit gate by sampling single-qubit operations”. New Journal of Physics, 23. https://doi.org/10.1088/1367-2630/abd7bcMitaraiK.FujiiK. (2021). “Constructing a virtual two-qubit gate by sampling single-qubit operations”. New Journal of Physics.23.https://doi.org/10.1088/1367-2630/abd7bcSearch in Google Scholar
T. Peng, A. W. Harrow, M. Ozols, and X. Wu (2020). “Simulating large quantum circuits on a small quantum computer”. Physical Review Letters 125, 150504. https://doi.org/10.1103/PhysRevLett.125.150504.PengT.HarrowA. W.OzolsM.WuX. (2020). “Simulating large quantum circuits on a small quantum computer”. Physical Review Letters.125.150504.https://doi.org/10.1103/PhysRevLett.125.150504.Search in Google Scholar
L. Brenner, C. Piveteau, D. Sutter (2023). “Optimal wire cutting with classical communication”. arXiv.2302.03366 https://doi.org/10.48550/arXiv.2302.03366.BrennerL.PiveteauC.SutterD. (2023). “Optimal wire cutting with classical communication”. arXiv.2302.03366.https://doi.org/10.48550/arXiv.2302.03366.Search in Google Scholar
P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, et al. (2019). “Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families”. arXiv.1907.13623GokhaleP.AngiuliO.DingY.GuiK.TomeshT.SucharaM. (2019). “Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families”. arXiv.1907.13623.Search in Google Scholar
J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, et al (2022). “The variational quantum eigensolver: A review of methods and best practices”. Physics Reports 986, 1128. https://doi.org/10.1016/j.physrep.2022.08.003.TillyJ.ChenH.CaoS.PicozziD.SetiaK.LiY. (2022). “The variational quantum eigensolver: A review of methods and best practices”. Physics Reports.986.1128.https://doi.org/10.1016/j.physrep.2022.08.003.Search in Google Scholar
Y. Wang, L. M. Sager-Smith, D. A. Mazziotti (2023). “Quantum simulation of bosons with the contracted quantum eigensolver”. New Journal of Physics 25, 10. https://doi.org/10.1088/1367-2630/acf9c3.WangY.Sager-SmithL. M.MazziottiD. A. (2023). “Quantum simulation of bosons with the contracted quantum eigensolver”. New Journal of Physics.25.10.https://doi.org/10.1088/1367-2630/acf9c3.Search in Google Scholar
M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran (2019). “Evaluating analytic gradients on quantum hardware”. Physical Review A 99. https://doi.org/10.1103/PhysRevA.99.032331.SchuldM.BergholmV.GogolinC.IzaacJ.KilloranN. (2019). “Evaluating analytic gradients on quantum hardware”. Physical Review A.99.https://doi.org/10.1103/PhysRevA.99.032331.Search in Google Scholar
A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, T. S. Humble (2019). “XACC: A system-level software infrastructure for heterogeneous quantum-classical computing”. Quantum Science and Technology 5: 2. https://doi.org/10.1088/2058-9565/ab6bf6McCaskeyA. J.LyakhD. I.DumitrescuE. F.PowersS. S.HumbleT. S. (2019). “XACC: A system-level software infrastructure for heterogeneous quantum-classical computing”. Quantum Science and Technology.5: 2.https://doi.org/10.1088/2058-9565/ab6bf6Search in Google Scholar
A. J. McCaskey, T. Nguyen, A. Santana, D. Claudino, T. Kharazi, H. Finkel (2021). “Extending C++ for heterogeneous quantum-classical computing”. ACM Transactions on Quantum Computing, 2: 2, 136. https://doi.org/10.1145/3462670.McCaskeyA. J.NguyenT.SantanaA.ClaudinoD.KharaziT.FinkelH. (2021). “Extending C++ for heterogeneous quantum-classical computing”. ACM Transactions on Quantum Computing.2: 2.136.https://doi.org/10.1145/3462670.Search in Google Scholar
J. K. Lee, O. T. Brown, M. Bull, M. Ruefenacht, J. Doerfert, M. Klemm et al. (2023). “Quantum task offloading with the openmp api”. arXiv.2311.03210. https://doi.org/10.48550/arXiv.2311.03210.LeeJ. K.BrownO. T.BullM.RuefenachtM.DoerfertJ.KlemmM. (2023). “Quantum task offloading with the openmp api”. arXiv.2311.03210.https://doi.org/10.48550/arXiv.2311.03210.Search in Google Scholar
J. Gambetta (2022). Quantum-centric Supercomputing: The Next Wave of Computing https://www.ibm.com/quantum/blog/next-wave-quantum-centric-supercomputingGambettaJ. (2022). Quantum-centric Supercomputing: The Next Wave of Computing.https://www.ibm.com/quantum/blog/next-wave-quantum-centric-supercomputingSearch in Google Scholar
J. Gambetta (2023). The Hardware and Software for the Era of Quantum Utility Is Here https://www.ibm.com/quantum/blog/quantum-roadmap-2033GambettaJ. (2023). The Hardware and Software for the Era of Quantum Utility Is Here.https://www.ibm.com/quantum/blog/quantum-roadmap-2033Search in Google Scholar
L. Liu, X. Dou (2021). “QuCloud: A new qubit mapping mechanism for multiprogramming quantum computing in cloud environment”, in IEEE Int. Symposium on High-performance Computer Architecture (HPCA) IEEE, pp. 167178. https://doi.org/10.1109/HPCA51647.2021.00024.LiuL.DouX. (2021). “QuCloud: A new qubit mapping mechanism for multiprogramming quantum computing in cloud environment”, in IEEE Int. Symposium on High-performance Computer Architecture (HPCA).IEEE pp. 167178.https://doi.org/10.1109/HPCA51647.2021.00024.Search in Google Scholar
L. Liu, X. Dou, QuCloud+ (2024). “A holistic qubit mapping scheme for single/multi-programming on 2D/3D NISQ quantum computers”. ACM Transactions on Architecture and Code Optimization 21: 1, 127. https://doi.org/10.1145/3631525.LiuL.DouX.QuCloud+ (2024). “A holistic qubit mapping scheme for single/multi-programming on 2D/3D NISQ quantum computers”. ACM Transactions on Architecture and Code Optimization.21: 1.127.https://doi.org/10.1145/3631525.Search in Google Scholar
M. Bandic, C. G. Almudever, S. Feld (2023). “Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques”. Quantum Machine Intelligence 5, 130. https://doi.org/10.1007/s42484-023-00124-1.BandicM.AlmudeverC. G.FeldS. (2023). “Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques”. Quantum Machine Intelligence.5.130.https://doi.org/10.1007/s42484-023-00124-1.Search in Google Scholar
K. Li, D. Qiu, L. Li, S. Zheng, Z. Rong (2017). “Application of distributed semi-quantum computing model in phase estimation”. Information Processing Letters 120, 23–29. https://doi.org/10.1016/j.ipl.2016.12.002.LiK.QiuD.LiL.ZhengS.RongZ. (2017). “Application of distributed semi-quantum computing model in phase estimation”. Information Processing Letters.120.23–29.https://doi.org/10.1016/j.ipl.2016.12.002.Search in Google Scholar
T. Tanaka, Y. Suzuki, S. Uno, R. Raymond, T. Onodera, N. Yamamoto (2021). “Amplitude estimation via maximum likelihood on noisy quantum computer”. Quantum Information Processing 20, 1–29. https://doi.org/10.1007/s11128-021-03215-9.TanakaT.SuzukiY.UnoS.RaymondR.OnoderaT.YamamotoN. (2021). “Amplitude estimation via maximum likelihood on noisy quantum computer”. Quantum Information Processing.20.1–29.https://doi.org/10.1007/s11128-021-03215-9.Search in Google Scholar
K. Zhang, P. Rao, K. Yu, H. Lim, V. Korepin (2021). “Implementation of efficient quantum search algorithms on NISQ computers”. Quantum Information Processing 20, 233. https://doi.org/10.1007/s11128-021-03165-2.ZhangK.RaoP.YuK.LimH.KorepinV. (2021). “Implementation of efficient quantum search algorithms on NISQ computers”. Quantum Information Processing.20.233.https://doi.org/10.1007/s11128-021-03165-2.Search in Google Scholar
G. Park, K. Zhang, K. Yu, V. Korepin (2023). “Quantum multi-programming for Grover’s search”. Quantum Information Processing 22, 1. https://doi.org/10.1007/s11128-022-03793-2.ParkG.ZhangK.YuK.KorepinV. (2023). “Quantum multi-programming for Grover’s search”. Quantum Information Processing.22.1.https://doi.org/10.1007/s11128-022-03793-2.Search in Google Scholar
P. Das, S. S. Tannu, P. J. Nair, M. Qureshi (2019). “A case for multiprogramming quantum computers”, in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture pp. 291–303. https://doi.org/10.1145/3352460.3358287.DasP.TannuS. S.NairP. J.QureshiM. (2019). “A case for multiprogramming quantum computers”, in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture pp. 291–303.https://doi.org/10.1145/3352460.3358287.Search in Google Scholar
S. Niu, A. Todri-Sanial (2023). “Enabling multi-programming mechanism for quantum computing in the NISQ era”. Quantum 7. https://doi.org/10.22331/q-2023-02-16-925.NiuS.Todri-SanialA. (2023). “Enabling multi-programming mechanism for quantum computing in the NISQ era”. Quantum.7.https://doi.org/10.22331/q-2023-02-16-925.Search in Google Scholar
A. Ash-Saki, M. Alam, S. Ghosh (2020). “Analysis of crosstalk in NISQ devices and security implications in multi-programming regime”, in Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design pp. 2530. https://doi.org/10.1145/3370748.3406570.Ash-SakiA.AlamM.GhoshS. (2020). “Analysis of crosstalk in NISQ devices and security implications in multi-programming regime”, in Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design pp. 2530.https://doi.org/10.1145/3370748.3406570.Search in Google Scholar
Y. Ohkura (2021). Crosstalk-aware NISQ Multi-programming Bachelor’s thesis, Faculty Policy Manage., Keio Univ., Tokyo, Japan (2021).OhkuraY. (2021). Crosstalk-aware NISQ Multi-programming. Bachelor’s thesis, Faculty Policy Manage, Keio Univ, Tokyo, Japan (2021).Search in Google Scholar
R. Parekh, A. Ricciardi, A. Darwish, and S. DiAdamo (2021). “Quantum algorithms and simulation for parallel and distributed quantum computing”, in 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS) pp. 9–19. https://doi.ieeecomputersociety.org/10.1109/QCS54837.2021.00005.ParekhR.RicciardiA.DarwishA.DiAdamoS. (2021). “Quantum algorithms and simulation for parallel and distributed quantum computing”, in 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS) pp. 9–19.https://doi.ieeecomputersociety.org/10.1109/QCS54837.2021.00005.Search in Google Scholar
P. Andres-Martinez, C. Heunen (2019). “Automated distribution of quantum circuits via hypergraph partitioning”. Physical Review A 100: 3, 032308. https://doi.org/10.1103/PhysRevA.100.032308.Andres-MartinezP.HeunenC. (2019). “Automated distribution of quantum circuits via hypergraph partitioning”. Physical Review A.100: 3.032308.https://doi.org/10.1103/PhysRevA.100.032308.Search in Google Scholar
A. Pastor, P. Escofet, S. B. Rached, E. Alarcon, P. Barlet-Ros, S. Abadal (2024). “Circuit partitioning for multi-core quantum architectures with deep reinforcement learning”. arXiv.2401.17976 https://doi.org/10.48550/arXiv.2401.17976.PastorA.EscofetP.RachedS. B.AlarconE.Barlet-RosP.AbadalS. (2024). “Circuit partitioning for multi-core quantum architectures with deep reinforcement learning”. arXiv.2401.17976.https://doi.org/10.48550/arXiv.2401.17976.Search in Google Scholar
Y. Akhremtsev, T. Heuer, P. Sanders, S. Schlag (2017). “Engineering a direct k-way hypergraph partitioning algorithm”. Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX) SIAM, pp. 28–42. https://doi.org/10.1137/1.9781611974768.3.AkhremtsevY.HeuerT.SandersP.SchlagS. (2017). “Engineering a direct k-way hypergraph partitioning algorithm”. Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX).SIAM pp. 28–42.https://doi.org/10.1137/1.9781611974768.3.Search in Google Scholar
S. Schlag, T. Heuer, L. Gottesburen, Y. Akhremtsev, C. Schulz, P. Sanders (2023). “High-quality hypergraph partitioning”. ACM Journal of Experimental Algorithmics 27, 1–39. https://doi.org/10.1145/3529090.SchlagS.HeuerT.GottesburenL.AkhremtsevY.SchulzC.SandersP. (2023). “High-quality hypergraph partitioning”. ACM Journal of Experimental Algorithmics.27.1–39.https://doi.org/10.1145/3529090.Search in Google Scholar
J.-Y. Wu, K. Matsui, T. Forrer, A. Soeda, P. Andres-Martinez, D. Mills et al (2023). “Entanglement-efficient bipartite-distributed quantum computing”. Quantum 7, 1196. https://doi.org/10.22331/q-2023-12-05-1196.WuJ.-Y.MatsuiK.ForrerT.SoedaA.Andres-MartinezP.MillsD. (2023). “Entanglement-efficient bipartite-distributed quantum computing”. Quantum.7.1196.https://doi.org/10.22331/q-2023-12-05-1196.Search in Google Scholar
P. Andres-Martinez, T. Forrer, D. Mills, J.-Y. Wu, L. Henaut, K. Yamamoto et al (2023). “Distributing circuits over heterogeneous, modular quantum computing network architectures”. Quantum Science and Technology 9, 4. https://doi.org/10.1088/2058-9565/ad6734.Andres-MartinezP.ForrerT.MillsD.WuJ.-Y.HenautL.YamamotoK. (2023). “Distributing circuits over heterogeneous, modular quantum computing network architectures”. Quantum Science and Technology.9.4.https://doi.org/10.1088/2058-9565/ad6734.Search in Google Scholar
R. G. Sundaram, H. Gupta, C. R. Ramakrishnan (2021). “Efficient distribution of quantum circuits”, in 35th Int. Symp. on Distributed Computing (DISC) 209 of Leibniz International Proceedings in Informatics (LIPIcs). https://doi.org/10.4230/LIPIcs.DISC.2021.41.SundaramR. G.GuptaH.RamakrishnanC. R. (2021). “Efficient distribution of quantum circuits”, in 35th Int. Symp. on Distributed Computing (DISC), 209 of Leibniz International Proceedings in Informatics (LIPIcs).https://doi.org/10.4230/LIPIcs.DISC.2021.41.Search in Google Scholar
R. G. Sundaram, H. Gupta, C. R. Ramakrishnan (2022). “Distribution of quantum circuits over general quantum networks”, in 2022 IEEE Int. Conf. on Quantum Computing and Engineering (QCE) pp. 415–425. https://doi.ieeecomputersociety.org/10.1109/QCE53715.2022.00063.SundaramR. G.GuptaH.RamakrishnanC. R. (2022). “Distribution of quantum circuits over general quantum networks”, in 2022 IEEE Int. Conf. on Quantum Computing and Engineering (QCE) pp. 415–425.https://doi.ieeecomputersociety.org/10.1109/QCE53715.2022.00063.Search in Google Scholar
R. G. Sundaram, H. Gupta (2023). “Distributing quantum circuits using teleportations”, in 2023 IEEE Int. Conf. on Quantum Software (QSW) pp. 186–192. https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00030.SundaramR. G.GuptaH. (2023). “Distributing quantum circuits using teleportations”, in 2023 IEEE Int. Conf. on Quantum Software (QSW) pp. 186–192.https://doi.ieeecomputersociety.org/10.1109/QSW59989.2023.00030.Search in Google Scholar
Z. Davarzani, M. Zomorodi-Moghadam, M. Houshmand, M. Nouri-Baygi (2020). “A dynamic programming approach for distributing quantum circuits by bipartite graphs”. Quantum Information Processing 19, 9. https://doi.org/10.1007/s11128-020-02871-7.DavarzaniZ.Zomorodi-MoghadamM.HoushmandM.Nouri-BaygiM. (2020). “A dynamic programming approach for distributing quantum circuits by bipartite graphs”. Quantum Information Processing.19.9.https://doi.org/10.1007/s11128-020-02871-7.Search in Google Scholar
B. W. Kernighan, S. Lin (1970). “An efficient heuristic procedure for partitioning graphs”. The Bell System Technical Journal 49: 2, 291–307. https://doi.org/10.1002/j.1538-7305.1970.tb01770.x.KernighanB. W.LinS. (1970). “An efficient heuristic procedure for partitioning graphs”. The Bell System Technical Journal.49: 2.291–307.https://doi.org/10.1002/j.1538-7305.1970.tb01770.x.Search in Google Scholar
M. Zomorodi-Moghadam, M. Houshmand, M. Houshmand (2018). “Optimizing teleportation cost in distributed quantum circuits”. International Journal of Theoretical Physics 57: 3, 848–861. https://doi.org/10.1007/s10773-017-3618-x.Zomorodi-MoghadamM.HoushmandM.HoushmandM. (2018). “Optimizing teleportation cost in distributed quantum circuits”. International Journal of Theoretical Physics.57: 3.848–861.https://doi.org/10.1007/s10773-017-3618-x.Search in Google Scholar
M. Houshmand, Z. Mohammadi, M. Zomorodi-Moghadam, M. Houshmand (2020). “An evolutionary approach to optimizing teleportation cost in distributed quantum computation”. International Journal of Theoretical Physics 59: 4. https://doi.org/10.1007/s10773-020-04409-0.HoushmandM.MohammadiZ.Zomorodi-MoghadamM.HoushmandM. (2020). “An evolutionary approach to optimizing teleportation cost in distributed quantum computation”. International Journal of Theoretical Physics.59: 4.https://doi.org/10.1007/s10773-020-04409-0.Search in Google Scholar
O. Daei, K. Navi, M. Zomorodi-Moghadam (2020). “Optimized quantum circuit partitioning”. International Journal of Theoretical Physics 59, 12, https://doi.org/3804-3820.DaeiO.NaviK.Zomorodi-MoghadamM. (2020). “Optimized quantum circuit partitioning”. International Journal of Theoretical Physics.59.12.https://doi.org/3804-3820.Search in Google Scholar
E. Nikahd, N. Mohammadzadeh, M. Sedighi, M. S. Zamani (2021). “Automated window-based partitioning of quantum circuits”. Physica Scripta 96: 3, 035102. 10.1088/1402-4896/abd57cNikahdE.MohammadzadehN.SedighiM.ZamaniM. S. (2021). “Automated window-based partitioning of quantum circuits”. Physica Scripta.96: 3.035102.10.1088/1402-4896/abd57cOpen DOISearch in Google Scholar
C. M. Fiduccia, R. M. Mattheyses (1982). “A linear-time heuristic for improving network partitions”. Papers on Twenty-five Years of Electronic Design Automation pp. 175–181. https://doi.org/10.1109/DAC.1982.1585498.FiducciaC. M.MattheysesR. M. (1982). “A linear-time heuristic for improving network partitions”. Papers on Twenty-five Years of Electronic Design Automation pp. 175–181.https://doi.org/10.1109/DAC.1982.1585498.Search in Google Scholar
W. Cambiucci, R. Silveira, W. Ruggiero (2023). “Hypergraphic partitioning of quantum circuits for distributed quantum computing”, in 2023 IEEE Int. Conf. on Quantum Computing and Engineering (QCE) IEEE Computer Society, Los Alamitos, CA, USA, pp. 268–269. https://doi.org/10.1109/QCE57702.2023.10237.CambiucciW.SilveiraR.RuggieroW. (2023). “Hypergraphic partitioning of quantum circuits for distributed quantum computing”, in 2023 IEEE Int. Conf. on Quantum Computing and Engineering (QCE).IEEE Computer Society.Los Alamitos, CA, USA pp. 268–269.https://doi.org/10.1109/QCE57702.2023.10237.Search in Google Scholar
J. Clark, T. Humble, H. Thapliyal (2023). “TDAG: Tree-based directed acyclic graph partitioning for quantum circuits”, in Proceedings of the Great Lakes Symposium on VLSI 2023 GLSVLSI 23, ACM, New York, USA, p. 587–592. https://doi.org/10.1145/3583781.3590234.ClarkJ.HumbleT.ThapliyalH. (2023). “TDAG: Tree-based directed acyclic graph partitioning for quantum circuits”, in Proceedings of the Great Lakes Symposium on VLSI 2023, GLSVLSI 23.ACM.New York, USA p. 587–592.https://doi.org/10.1145/3583781.3590234.Search in Google Scholar
T. Park, C. Y. Lee (1995). “Algorithms for partitioning a graph”. Computers and Industrial Engineering 28: 4, 899909. https://doi.org/10.1016/0360-8352(95)00003-J.ParkT.LeeC. Y. (1995). “Algorithms for partitioning a graph”. Computers and Industrial Engineering.28: 4.899909.https://doi.org/10.1016/0360-8352(95)00003-J.Search in Google Scholar
J. M. Baker, C. Duckering, A. Hoover, F. T. Chong (2020). “Time-sliced quantum circuit partitioning for modular architectures”, in 17th ACM Int. Conf. on Computing Frontiers 2020 Proceedings ACM, pp. 98–107. https://doi.org/10.1145/3387902.3392617.BakerJ. M.DuckeringC.HooverA.ChongF. T. (2020). “Time-sliced quantum circuit partitioning for modular architectures”, in 17th ACM Int. Conf. on Computing Frontiers 2020 Proceedings.ACM pp. 98–107.https://doi.org/10.1145/3387902.3392617.Search in Google Scholar
P. Escofet, A. Ovide, C. G. Almudever, E. Alarcon, S. Abadal (2023). “Hungarian qubit assignment for optimized mapping of quantum circuits on multi-core architectures”. IEEE Computer Architecture Letters https://doi.org/10.1109/LCA.2023.3318857.EscofetP.OvideA.AlmudeverC. G.AlarconE.AbadalS. (2023). “Hungarian qubit assignment for optimized mapping of quantum circuits on multi-core architectures”. IEEE Computer Architecture Letters.https://doi.org/10.1109/LCA.2023.3318857.Search in Google Scholar
M. Bandic, L. Prielinger, J. Nublein, A. Ovide, S. Rodrigo, S. Abadal et al (2023). “Mapping quantum circuits to modular architectures with QUBO”. 2023 IEEE Int. Conf. on Quantum Computing and Engineering (QCE) 1, IEEE, pp. 790801. https://doi.org/10.1109/QCE57702.2023.00094.BandicM.PrielingerL.NubleinJ.OvideA.RodrigoS.AbadalS. (2023). “Mapping quantum circuits to modular architectures with QUBO”. 2023 IEEE Int. Conf. on Quantum Computing and Engineering (QCE).1.IEEE pp. 790801.https://doi.org/10.1109/QCE57702.2023.00094.Search in Google Scholar
A. Ovide, S. Rodrigo, M. Bandic, H. Van Someren, S. Feld, S. Abadal et al. (2023). “Mapping quantum algorithms to multi-core quantum computing architectures”. IEEE Int. Symposium on Circuits and Systems (ISCAS) IEEE, pp. 1–5. https://doi.org/10.1109/ISCAS46773.2023.10181589.OvideA.RodrigoS.BandicM.Van SomerenH.FeldS.AbadalS. (2023). “Mapping quantum algorithms to multi-core quantum computing architectures”. IEEE Int. Symposium on Circuits and Systems (ISCAS) IEEE pp. 1–5.https://doi.org/10.1109/ISCAS46773.2023.10181589.Search in Google Scholar
L. K. Grover (1997). “Quantum telecomputation”. arXiv.quant-ph/9704012 https://doi.org/10. 48550/arXiv.quant-ph/9704012.GroverL. K. (1997). “Quantum telecomputation”. arXiv.quant-ph/9704012.https://doi.org/10. 48550/arXiv.quant-ph/9704012.Search in Google Scholar
M. Gupta, A. Pathak (2007). “A scheme for distributed quantum search through simultaneous state transfer mechanism”. Annalen der Physik 16: 12, 791797. https://doi.org/10.1002/andp.200710265.GuptaM.PathakA. (2007). “A scheme for distributed quantum search through simultaneous state transfer mechanism”. Annalen der Physik.16: 12.791797.https://doi.org/10.1002/andp.200710265.Search in Google Scholar
A. Yimsiriwattana and S. J. Lomonaco (2004). “Distributed quantum computing: A distributed Shor algorithm”, in Quantum Information and Computation II 5436. International Society for Optics and Photonics, pp. 360372. DOI: https://doi.org/10.1117/12.546504.YimsiriwattanaA.LomonacoS. J. (2004). “Distributed quantum computing: A distributed Shor algorithm”, in Quantum Information and Computation II, 5436.International Society for Optics and Photonics pp. 360372.https://doi.org/10.1117/12.546504.Search in Google Scholar
M. Ekera, J. Hastad (2017). “Quantum algorithms for computing short discrete logarithms and factoring RSA integers”, in T. Lange, T. Takagi (Eds.), Post-Quantum Cryptography, no. 10346 in LNCS, Springer, pp. 347–363. https://doi.org/10.1007/978-3-319-59879-6 20.EkeraM.HastadJ. (2017). “Quantum algorithms for computing short discrete logarithms and factoring RSA integers”, in LangeT.TakagiT. (Eds.), Post-Quantum Cryptography, no. 10346 in LNCS.Springer pp. 347–363.https://doi.org/10.1007/978-3-319-59879-6 20.Search in Google Scholar
Z.-Y. Chen, Q. Zhou, C. Xue, X. Yang, G.-C. Guo, and G.-P. Guo (2018). “64-Qubit Quantum Circuit Simulation”. Science Bulletin 63, 964. https://doi.org/10.1016/j.scib.2018.06.007.ChenZ.-Y.ZhouQ.XueC.YangX.GuoG.-C.GuoG.-P. (2018). “64-Qubit Quantum Circuit Simulation”. Science Bulletin.63.964.https://doi.org/10.1016/j.scib.2018.06.007.Search in Google Scholar
A. Eddins, M. Motta, T. P. Gujarati, S. Bravyi, A. Mezzacapo, C. Hadfield, and S. Sheldon (2022). “Doubling the size of quantum simulators by entanglement forging”. PRX Quantum 3. https://doi.org/10.1103/PRXQuantum.3.010309.EddinsA.MottaM.GujaratiT. P.BravyiS.MezzacapoA.HadfieldC.SheldonS. (2022). “Doubling the size of quantum simulators by entanglement forging”. PRX Quantum.3.https://doi.org/10.1103/PRXQuantum.3.010309.Search in Google Scholar
M. A. Perlin, Z. H. Saleem, M. Suchara, and J. C. Osborn (2021). “Quantum circuit cutting with maximum likelihood tomography”. npj Quantum Information 7: 1, 64. https://doi.org/10.1038/s41534-021-00390-6.PerlinM. A.SaleemZ. H.SucharaM.OsbornJ. C. (2021). “Quantum circuit cutting with maximum likelihood tomography”. npj Quantum Information.7: 1.64.https://doi.org/10.1038/s41534-021-00390-6.Search in Google Scholar
W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi (2021). “CutQC: using small Quantum computers for large Quantum circuit evaluations”, in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21) 473–486. https://doi.org/10.1145/3445814.3446758.TangW.TomeshT.SucharaM.LarsonJ.MartonosiM. (2021). “CutQC: using small Quantum computers for large Quantum circuit evaluations”, in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ‘21).473–486.https://doi.org/10.1145/3445814.3446758.Search in Google Scholar
Z. H. Saleem, T. Tomesh, M. A. Perlin, P. Gokhale, and M. Suchara (2021). “Divide and conquer for combinatorial optimization and distributed quantum computation”. arXiv:2107.07532 https://doi.org/10.48550/arXiv.2107.07532.SaleemZ. H.TomeshT.PerlinM. A.GokhaleP.SucharaM. (2021). “Divide and conquer for combinatorial optimization and distributed quantum computation”. arXiv:2107.07532.https://doi.org/10.48550/arXiv.2107.07532.Search in Google Scholar
A. Lowe et al (2023). “Fast quantum circuit cutting with randomized measurements”. Quantum 7, 934. https://doi.org/10.22331/q-2023-03-02-934.LoweA. (2023). “Fast quantum circuit cutting with randomized measurements”. Quantum.7.934.https://doi.org/10.22331/q-2023-03-02-934.Search in Google Scholar
S. C. Marshall, C. Gyurik, and V. Dunjko (2022). “High dimensional quantum machine learning with small quantum computers”. arXiv:2203.13739 https://doi.org/10.22331/q-2023-08-09-1078.MarshallS. C.GyurikC.DunjkoV. (2022). “High dimensional quantum machine learning with small quantum computers”. arXiv:2203.13739.https://doi.org/10.22331/q-2023-08-09-1078.Search in Google Scholar
C. Piveteau and D. Sutter (2023). “Circuit knitting with classical communication”. IEEE Transactions on Information Theory DOI: 10.1109/TIT.2023.3310797. https://doi.org/10.1109/TIT.2023.3310797.PiveteauC.SutterD. (2023). “Circuit knitting with classical communication”. IEEE Transactions on Information Theory.10.1109/TIT.2023.3310797.https://doi.org/10.1109/TIT.2023.3310797.Open DOISearch in Google Scholar
C. Tuysuz et al (2021). “Classical splitting of parametrized quantum circuits”. Quantum Machine Intelligence 5, 34. https://doi.org/10.1007/s42484-023-00118-z.TuysuzC. (2021). “Classical splitting of parametrized quantum circuits”. Quantum Machine Intelligence.5.34.https://doi.org/10.1007/s42484-023-00118-z.Search in Google Scholar
K. Mitarai and K. Fujii (2021). “Overhead for simulating a non-local channel with local channels by quasiprobability sampling”. Quantum 5, 388. https://doi.org/10.22331/q-2021-01-28-388.MitaraiK.FujiiK. (2021). “Overhead for simulating a non-local channel with local channels by quasiprobability sampling”. Quantum.5.388.https://doi.org/10.22331/q-2021-01-28-388.Search in Google Scholar
S. Bravyi, G. Smith, and J. A. Smolin (2016). “Trading classical and quantum computational resources”. Physical Review X 6. https://doi.org/10.1103/PhysRevX.6.021043.BravyiS.SmithG.SmolinJ. A. (2016). “Trading classical and quantum computational resources”. Physical Review X.6.https://doi.org/10.1103/PhysRevX.6.021043.Search in Google Scholar
A. W. Harrow, A. Lowe (2025). “Optimal quantum circuit cuts with application to clustered Hamiltonian simulation”. PRX Quantum 6, 010316. https://doi.org/10.1103/PRXQuantum.6.010316.HarrowA. W.LoweA. (2025). “Optimal quantum circuit cuts with application to clustered Hamiltonian simulation”. PRX Quantum.6.010316.https://doi.org/10.1103/PRXQuantum.6.010316.Search in Google Scholar
Z. Zhou, Y. Du, X. Tian, D. Tao (2023). “QAOA-in-QAOA: Solving large-scale max-cut problems on small quantum machines”. Physical Review Applied 19: 2, 024027. https://doi.org/10.1103/PhysRevApplied. 19.024027.ZhouZ.DuY.TianX.TaoD. (2023). “QAOA-in-QAOA: Solving large-scale max-cut problems on small quantum machines”. Physical Review Applied.19: 2.024027.https://doi.org/10.1103/PhysRevApplied.19.024027.Search in Google Scholar
K. Fujii, K. Mizuta, H. Ueda, K. Mitarai, W. Mizukami, Y. O. Nakagawa (2022). “Deep variational quantum eigensolver: A divide-and-conquer method for solving a larger problem with smaller size quantum computers”. PRX Quantum 3. https://doi.org/10.1103/PRXQuantum.3.010346.FujiiK.MizutaK.UedaH.MitaraiK.MizukamiW.NakagawaY. O. (2022). “Deep variational quantum eigensolver: A divide-and-conquer method for solving a larger problem with smaller size quantum computers”. PRX Quantum.3.https://doi.org/10.1103/PRXQuantum.3.010346.Search in Google Scholar
S. C. Marshall, C. Gyurik, V. Dunjko (2023). “High dimensional quantum machine learning with small quantum computers”. Quantum 7. https://doi.org/10.22331/q-2023-08-09-1078.MarshallS. C.GyurikC.DunjkoV. (2023). “High dimensional quantum machine learning with small quantum computers”. Quantum.7.https://doi.org/10.22331/q-2023-08-09-1078.Search in Google Scholar
D. Gottesman, I. L. Chuang (1999). “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations”. Nature 402, 6760, 390393. https://doi.org/10.1038/46503.GottesmanD.ChuangI. L. (1999). “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations”. Nature.402.6760.390393.https://doi.org/10.1038/46503.Search in Google Scholar
Y. F. Huang, X. F. Ren, Y. S. Zhang, L. M. Duan, G. C. Guo (2004). “Experimental teleportation of a quantum controlled-NOT gate”. Physical Review Letters 93. https://doi.org/10.1103/PhysRevLett.93.240501.HuangY. F.RenX. F.ZhangY. S.DuanL. M.GuoG. C. (2004). “Experimental teleportation of a quantum controlled-NOT gate”. Physical Review Letters.93.https://doi.org/10.1103/PhysRevLett.93.240501.Search in Google Scholar
K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, et al. (2018). “Deterministic teleportation of a quantum gate between two logical qubits”. Nature 561: 7723, 368373. https://doi.org/10.1038/s41586-018-0470-y.ChouK. S.BlumoffJ. Z.WangC. S.ReinholdP. C.AxlineC. J.GaoY. Y. (2018). “Deterministic teleportation of a quantum gate between two logical qubits”. Nature.561: 7723.368373.https://doi.org/10.1038/s41586-018-0470-y.Search in Google Scholar
Y. Wan, D. Kienzler, S. Erickson, K. Mayer, T. Tan, J. Wu, et al (2019). “Quantum gate teleportation between separated qubits in a trapped-ion processor”. Science 364, 875878. https://doi.org/10.1126/science.aaw9415.WanY.KienzlerD.EricksonS.MayerK.TanT.WuJ. (2019). “Quantum gate teleportation between separated qubits in a trapped-ion processor”. Science.364.875878.https://doi.org/10.1126/science.aaw9415.Search in Google Scholar
S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, et al (2021). “A quantum-logic gate between distant quantum-network modules”. Science 371: 6529, 614617. https://doi.org/10.1126/science.abe3150.DaissS.LangenfeldS.WelteS.DistanteE.ThomasP.HartungL. (2021). “A quantum-logic gate between distant quantum-network modules”. Science.371: 6529.614617.https://doi.org/10.1126/science.abe3150.Search in Google Scholar
C. Qiao, Y. Zhao, G. Zhao, H. Xu (2022). “Quantum data networking for distributed quantum computing: opportunities and challenges”, in Proceedings of the IEEE Conference on Computer Communications Workshop New York, NY, pp. 16. https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798138.QiaoC.ZhaoY.ZhaoG.XuH. (2022). “Quantum data networking for distributed quantum computing: opportunities and challenges”, in Proceedings of the IEEE Conference on Computer Communications Workshop.New York, NY pp. 16.https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798138.Search in Google Scholar
Z. Cho, Y. Son, H. Jeong et al (2022). “A new approach to quantum computing multi-qubit generation and development of quantum computing platform with magnetic resonance imaging techniques”. arXiv:2206.05932 https://doi.org/10.48550/arXiv.2206.05932.ChoZ.SonY.JeongH. (2022). “A new approach to quantum computing multi-qubit generation and development of quantum computing platform with magnetic resonance imaging techniques”. arXiv:2206.05932.https://doi.org/10.48550/arXiv.2206.05932.Search in Google Scholar
E. Alarcon, S. Abadal, F. Sebastiano et al (2023). “Scalable multi-chip quantum architectures enabled by cryogenic hybrid wireless/quantum-coherent network-in-package”, in Proceedings of the IEEE International Symposium on Circuits and Systems Monterey, CA, USA, pp. 15. https://doi.org/10.1109/ISCAS46773.2023.10181857.AlarconE.AbadalS.SebastianoF. (2023). “Scalable multi-chip quantum architectures enabled by cryogenic hybrid wireless/quantum-coherent network-in-package”, in Proceedings of the IEEE International Symposium on Circuits and Systems.Monterey, CA, USA pp. 15.https://doi.org/10.1109/ISCAS46773.2023.10181857.Search in Google Scholar
Y. Zheng, C. Zhai, D. Liu et al (2023). “Multichip multidimensional quantum networks with entanglement retrievability”. Science 381, 221226. https://doi.org/10.1126/science.adg9210.ZhengY.ZhaiC.LiuD. (2023). “Multichip multidimensional quantum networks with entanglement retrievability”. Science.381.221226.https://doi.org/10.1126/science.adg9210.Search in Google Scholar
M. Field, A. Chen, B. Scharmann et al (2024). “Modular superconducting-qubit architecture with a multichip tunable coupler”. Physical Review Applied 21, 054063. https://doi.org/10.1103/PhysRevApplied.21.054063.FieldM.ChenA.ScharmannB. (2024). “Modular superconducting-qubit architecture with a multichip tunable coupler”. Physical Review Applied.21.054063.https://doi.org/10.1103/PhysRevApplied.21.054063.Search in Google Scholar
J. Stokes, J. Izaac, N. Killoran, G. Carleo (2020). “Quantum natural gradient”. Quantum 4, 269. https://doi.org/10.22331/q-2020-05-25-269.StokesJ.IzaacJ.KilloranN.CarleoG. (2020). “Quantum natural gradient”. Quantum.4.269.https://doi.org/10.22331/q-2020-05-25-269.Search in Google Scholar
M. S. Alvarez-Alvarado, F. E. Alban-Chacon, E. A. Lamilla-Rubio et al (2021). “Three novel quantum inspired swarm optimization algorithms using different bounded potential fields”. Scientific Reports 11: 1, 11655. https://doi.org/10.1038/s41598-021-90847-7.Alvarez-AlvaradoM. S.Alban-ChaconF. E.Lamilla-RubioE. A. (2021). “Three novel quantum inspired swarm optimization algorithms using different bounded potential fields”. Scientific Reports.11: 1.11655.https://doi.org/10.1038/s41598-021-90847-7.Search in Google Scholar
D. Wierichs, J. Izaac, C. Wang, C. Y.-Y. Lin (2022). “General parameter-shift rules for quantum gradients”. Quantum, 6, 677. https://doi.org/10.22331/q-2022-03-30-677.WierichsD.IzaacJ.WangC.LinC. Y.-Y. (2022). “General parameter-shift rules for quantum gradients”. Quantum.6.677.https://doi.org/10.22331/q-2022-03-30-677.Search in Google Scholar
E. R. Anschuetz, B. T. Kiani (2022). “Quantum variational algorithms are swamped with traps”. Nature Communications, 13: 1, 7760. https://doi.org/10.1038/s41467-022-35364-5.AnschuetzE. R.KianiB. T. (2022). “Quantum variational algorithms are swamped with traps”. Nature Communications.13: 1.7760.https://doi.org/10.1038/s41467-022-35364-5.Search in Google Scholar
D. Failde, J. D. Viqueira, M. Mussa Juane, A. Gomez (2023). “Using differential evolution to avoid local minima in variational quantum algorithms. Scientific Reports, 13: 1 16230. https://doi.org/10.1038/s41598-023-43 404-3.FaildeD.ViqueiraJ. D.Mussa JuaneM.GomezA. (2023). “Using differential evolution to avoid local minima in variational quantum algorithms.Scientific Reports.13: 116230.https://doi.org/10.1038/s41598-023-43 404-3.Search in Google Scholar
J. D. Viqueira, D. Failde, M. M. Juane, A. Gomez, D. Mera (2025). “Density matrix emulation of quantum recurrent neural networks for multivariate time series prediction”. Machine Learning: Science and Technology, 6, 015023. https://doi.org/10.1088/2632-2153/ad9431ViqueiraJ. D.FaildeD.JuaneM. M.GomezA.MeraD. (2025). “Density matrix emulation of quantum recurrent neural networks for multivariate time series prediction”. Machine Learning: Science and Technology.6.015023.https://doi.org/10.1088/2632-2153/ad9431Search in Google Scholar
D. Ferrari, S. Carretta, M. Amoretti (2023). “A modular quantum compilation framework for distributed quantum computing”. IEEE Transactions on Quantum Engineering, 4, 2500213. https://doi.org/10.1109/TQE.2023.3303935.FerrariD.CarrettaS.AmorettiM. (2023). “A modular quantum compilation framework for distributed quantum computing”. IEEE Transactions on Quantum Engineering.4.2500213.https://doi.org/10.1109/TQE.2023.3303935.Search in Google Scholar
O. Mukhanov, B. L. T. Plourde, A. Opremcak et al (2019). “Scalable quantum computing infrastructure based on superconducting electronics”, in Proceedings of the IEEE International Electron Devices Meeting San Francisco, CA, USA, pp. 31.2.131.2.4. https://doi.org/10.1109/IEDM19573.2019.8993634.MukhanovO.PlourdeB. L. T.OpremcakA. (2019). “Scalable quantum computing infrastructure based on superconducting electronics”, in Proceedings of the IEEE International Electron Devices Meeting.San Francisco, CA, USA pp. 31.2.131.2.4. https://doi.org/10.1109/IEDM19573.2019.8993634.Search in Google Scholar
B. Baheri, Q. Guan, S. Xu, V. Chaudhary (2022). “SQCC: Smart quantum circuit cutting”, in Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops Lyon, France, pp. 614615. https://doi.org/10.1109/IPDPSW55747.2022.00104.BaheriB.GuanQ.XuS.ChaudharyV. (2022). “SQCC: Smart quantum circuit cutting”,in Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops.Lyon, France pp. 614615.https://doi.org/10.1109/IPDPSW55747.2022.00104.Search in Google Scholar
K. Smith, M. Perlin, P. Gokhale et al (2023). “Clifford-based circuit cutting for quantum simulation”, in Proceedings of the 50th Annual International Symposium on Computer Architecture Orlando, FL, USA, pp. 113. https://doi.org/10.1145/3579371.3589352.SmithK.PerlinM.GokhaleP. (2023). “Clifford-based circuit cutting for quantum simulation”, in Proceedings of the 50th Annual International Symposium on Computer Architecture.Orlando, FL, USA pp. 113.https://doi.org/10.1145/3579371.3589352.Search in Google Scholar
E. El-Araby, N. Mahmud, M. J. Jeng et al (2023). “Towards complete and scalable emulation of quantum algorithms on high-performance reconfigurable computers”. IEEE Transactions on Computers, 72, 23502364. https://doi.org/10.1109/TC.2023.3248276.El-ArabyE.MahmudN.JengM. J. (2023). “Towards complete and scalable emulation of quantum algorithms on high-performance reconfigurable computers”. IEEE Transactions on Computers.72.23502364.https://doi.org/10.1109/TC.2023.3248276.Search in Google Scholar
E. Andres, M. P. Cuellar, G. Navarro (2023). “Efficient dimensionality reduction strategies for quantum reinforcement learning”. IEEE Access 11, 104534104553. https://doi.org/10.1109/ACCESS.2023.3318173.AndresE.CuellarM. P.NavarroG. (2023). “Efficient dimensionality reduction strategies for quantum reinforcement learning”. IEEE Access.11.104534104553.https://doi.org/10.1109/ACCESS.2023.3318173.Search in Google Scholar
M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini (2019). “Parameterized quantum circuits as machine learning models”. Quantum Science and Technology, 4. https://doi.org/10.1088/2058-9565/ab4eb5.BenedettiM.LloydE.SackS.FiorentiniM. (2019). “Parameterized quantum circuits as machine learning models”. Quantum Science and Technology.4.https://doi.org/10.1088/2058-9565/ab4eb5.Search in Google Scholar
M. Schuld, I. Sinayskiy, and F. Petruccione (2014). “The quest for a quantum neural network”. Quantum Information Processing, 13. https://doi.org/10.1007/s11128-014-0809-8.SchuldM.SinayskiyI.PetruccioneF. (2014). “The quest for a quantum neural network”. Quantum Information Processing.13.https://doi.org/10.1007/s11128-014-0809-8.Search in Google Scholar
K. Beer, D. Bondarenko, T. Farrelly, T. Osborne, R. Salzmann, D. Scheiermann, and R. Wolf. (2020). “Training deep quantum neural networks”. Nature Communications, 11, 808. https://doi.org/10.1038/s41467-020-14 454-2.BeerK.BondarenkoD.FarrellyT.OsborneT.SalzmannR.ScheiermannD.WolfR. (2020). “Training deep quantum neural networks”. Nature Communications.11.808.https://doi.org/10.1038/s41467-020-14 454-2.Search in Google Scholar
M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al (2021). “Variational quantum algorithms”. Nature Reviews Physics, 3, 625. https://doi.org/10.1038/s42254-021-00348-9.CerezoM.ArrasmithA.BabbushR.BenjaminS. C.EndoS.FujiiK.McCleanJ. R.MitaraiK.YuanX.CincioL. (2021). “Variational quantum algorithms”. Nature Reviews Physics.3.625.https://doi.org/10.1038/s42254-021-00348-9.Search in Google Scholar
S. Mangini, F. Tacchino, D. Gerace, D. Bajoni, and C. Macchiavello (2021). “Quantum computing models for artificial neural networks”. Europhysics Letters, 134, 10002. https://doi.org/10.1209/0295-5075/134/10002.ManginiS.TacchinoF.GeraceD.BajoniD.MacchiavelloC. (2021). “Quantum computing models for artificial neural networks”. Europhysics Letters.134.10002.https://doi.org/10.1209/0295-5075/134/10002.Search in Google Scholar
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta (2017). “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets”. Nature, 549, 242. https://doi.org/10.1038/nature23879.KandalaA.MezzacapoA.TemmeK.TakitaM.BrinkM.ChowJ. M.GambettaJ. M. (2017). “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets”. Nature.549.242.https://doi.org/10.1038/nature23879.Search in Google Scholar
R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Faehrmann, B. Meynard-Piganeau, and J. Eisert (2020). “Stochastic gradient descent for hybrid quantum-classical optimization”. Quantum, 4, 314. https://doi.org/10. 22331/q-2020-08-31-314.SwekeR.WildeF.MeyerJ.SchuldM.FaehrmannP. K.Meynard-PiganeauB.EisertJ. (2020). “Stochastic gradient descent for hybrid quantum-classical optimization”. Quantum.4.314.https://doi.org/10. 22331/q-2020-08-31-314.Search in Google Scholar
J. Biamonte et al (2017). “Quantum machine learning”. Nature 549, 195–202. https://doi.org/10.1038/nature23474.BiamonteJ. (2017). “Quantum machine learning”. Nature.549.195–202.https://doi.org/10.1038/nature23474.Search in Google Scholar
Z.-C. Yang et al (2017). “Optimizing variational quantum algorithms using Pontryagin’s minimum principle”. Physical Review X, 7, 021027. https://doi.org/10.1103/PhysRevX.7.021027.YangZ.-C. (2017). “Optimizing variational quantum algorithms using Pontryagin’s minimum principle”. Physical Review X.7.021027.https://doi.org/10.1103/PhysRevX.7.021027.Search in Google Scholar
Y.-H. Oh et al (2019). “Solving multi-coloring combinatorial optimization problems using hybrid quantum algorithms”. arXiv:1911.00595 https://doi.org/10.48550/arXiv.1911.00595.OhY.-H. (2019). “Solving multi-coloring combinatorial optimization problems using hybrid quantum algorithms”. arXiv:1911.00595.https://doi.org/10.48550/arXiv.1911.00595.Search in Google Scholar
J. Biamonte (2021). “Universal variational quantum computation”. Physical Review A 103: 3, L030401. https://doi.org/10.1103/PhysRevA.103.L030401.BiamonteJ. (2021). “Universal variational quantum computation”. Physical Review A.103: 3.L030401.https://doi.org/10.1103/PhysRevA.103.L030401.Search in Google Scholar
V. Havlicek et al (2019). “Supervised learning with quantum-enhanced feature spaces”. Nature 567: 7747, 209–212. https://doi.org/10.1038/s41586-019-0980-2.HavlicekV. (2019). “Supervised learning with quantum-enhanced feature spaces”. Nature.567: 7747.209–212.https://doi.org/10.1038/s41586-019-0980-2.Search in Google Scholar
A. Manzano et al (2023). “Parametrized quantum circuits and their approximation capacities in the context of quantum machine learning”. arXiv:2307.14792 https://doi.org/10.48550/arXiv.2307.14792.ManzanoA. (2023). “Parametrized quantum circuits and their approximation capacities in the context of quantum machine learning”. arXiv:2307.14792.https://doi.org/10.48550/arXiv.2307.14792.Search in Google Scholar
V. Dunjko, J. M. Taylor, and H. J. Briegel (2016). “Quantum-enhanced machine learning”. Physical Review Letters, 117. https://doi.org/10.1103/PhysRevLett.117.130501.DunjkoV.TaylorJ. M.BriegelH. J. (2016). “Quantum-enhanced machine learning”. Physical Review Letters.117.https://doi.org/10.1103/PhysRevLett.117.130501.Search in Google Scholar
L. Pira (2024). The Fundamentals of Quantum Neural Networks. PhD Dissertation. University of Technology Sydney.PiraL. (2024). The Fundamentals of Quantum Neural Networks. PhD Dissertation.University of Technology Sydney.Search in Google Scholar
E. Tang (2019). “A quantum-inspired classical algorithm for recommendation systems”, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing https://doi.org/10.1145/3313276.3316310.TangE. (2019). “A quantum-inspired classical algorithm for recommendation systems”, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing.https://doi.org/10.1145/3313276.3316310.Search in Google Scholar
S. Lloyd, M. Mohseni, and P. Rebentrost (2013). “Quantum algorithms for supervised and unsupervised machine learning”. arXiv:1307.0411 https://doi.org/10.48550/arXiv.1307.0411.LloydS.MohseniM.RebentrostP. (2013). “Quantum algorithms for supervised and unsupervised machine learning”. arXiv:1307.0411.https://doi.org/10.48550/arXiv.1307.0411.Search in Google Scholar
V. Giovannetti, S. Lloyd, and L. Maccone (2008). “Architectures for a quantum random access memory”. Physical Review A, 78. https://doi.org/10.1103/PhysRevA.78.052310.GiovannettiV.LloydS.MacconeL. (2008). “Architectures for a quantum random access memory”. Physical Review A.78.https://doi.org/10.1103/PhysRevA.78.052310.Search in Google Scholar
V. Giovannetti, S. Lloyd, and L. Maccone (2008). “Quantum random access memory”. Physical Review Letters, 100. https://doi.org/10.1103/PhysRevLett.100.160501.GiovannettiV.LloydS.MacconeL. (2008). “Quantum random access memory”. Physical Review Letters.100.https://doi.org/10.1103/PhysRevLett.100.160501.Search in Google Scholar
S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and P. V. Srinivasan (2015). “On the robustness of bucket brigade quantum RAM”. New Journal of Physics, 17, 123010. https://doi.org/10.1088/1367-2630/17/12/123010.ArunachalamS.GheorghiuV.Jochym-O’ConnorT.MoscaM.SrinivasanP. V. (2015). “On the robustness of bucket brigade quantum RAM”. New Journal of Physics.17.123010.https://doi.org/10.1088/1367-2630/17/12/123010.Search in Google Scholar
L. Gyongyosi and S. Imre (2019). “Training optimization for gate-model quantum neural networks”. Scientific Reports DOI: 10.1038/s41598-019-48892-w. https://doi.org/10.1038/s41598-019-48892-w.GyongyosiL.ImreS. (2019). “Training optimization for gate-model quantum neural networks”. Scientific Reports.10.1038/s41598-019-48892-w.https://doi.org/10.1038/s41598-019-48892-w.Open DOISearch in Google Scholar
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborova (2019). “Machine learning and the physical sciences”. Reviews of Modern Physics, 91. https://doi.org/10.1103/RevModPhys.91.045002.CarleoG.CiracI.CranmerK.DaudetL.SchuldM.TishbyN.Vogt-MarantoL.ZdeborovaL. (2019). “Machine learning and the physical sciences”. Reviews of Modern Physics.91.https://doi.org/10.1103/RevModPhys.91.045002.Search in Google Scholar
A. Dawid, J. Arnold, B. Requena, A. Gresch, M. P lodzien, K. Donatella, K. A. Nicoli, P. Stornati, R. Koch, M. Buttner, et al (2022). “Modern applications of machine learning in quantum sciences”. arXiv:2204.04198 https://doi.org/10.48550/arXiv.2204.04198.DawidA.ArnoldJ.RequenaB.GreschA.lodzienM. PDonatellaK.NicoliK. A.StornatiP.KochR.ButtnerM. (2022). “Modern applications of machine learning in quantum sciences”. arXiv:2204.04198.https://doi.org/10.48550/arXiv.2204.04198.Search in Google Scholar
M. Bukov, A. G. R. Day, D. Sels, P. Weinberg, A. Polkovnikov, and P. Mehta (2018). “Reinforcement learning in different phases of quantum control”. Physical Review X, 8. https://doi.org/10.1103/PhysRevX.8.031086.BukovM.DayA. G. R.SelsD.WeinbergP.PolkovnikovA.MehtaP. (2018). “Reinforcement learning in different phases of quantum control”. Physical Review X.8.https://doi.org/10.1103/PhysRevX.8.031086.Search in Google Scholar
M. Y. Niu, S. Boixo, V. N. Smelyanskiy, and H. Neven (2019). “Universal quantum control through deep reinforcement learning”. npj Quantum Information, 5, 1. https://doi.org/10.1038/s41534-019-0141-3.NiuM. Y.BoixoS.SmelyanskiyV. N.NevenH. (2019). “Universal quantum control through deep reinforcement learning”. npj Quantum Information.5.1.https://doi.org/10.1038/s41534-019-0141-3.Search in Google Scholar
H. P. Nautrup, N. Delfosse, V. Dunjko, H. J. Briegel, and N. Friis (2019). “Optimizing quantum error correction codes with reinforcement learning”. Quantum, 3, 215. https://doi.org/10.22331/q-2019-12-16-215.NautrupH. P.DelfosseN.DunjkoV.BriegelH. J.FriisN. (2019). “Optimizing quantum error correction codes with reinforcement learning”. Quantum.3.215.https://doi.org/10.22331/q-2019-12-16-215.Search in Google Scholar
G. Torlai and R. G. Melko (2017). “A neural decoder for topological codes”. Physical Review Letters, 119, 030501. https://doi.org/10.1103/PhysRevLett.119.030501.TorlaiG.MelkoR. G. (2017). “A neural decoder for topological codes”. Physical Review Letters.119.030501.https://doi.org/10.1103/PhysRevLett.119.030501.Search in Google Scholar
G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo (2018). “Many-body quantum state tomography with neural networks”. Nature Physics, 14. https://doi.org/10.1038/s41567-018-0048-5.TorlaiG.MazzolaG.CarrasquillaJ.TroyerM.MelkoR.CarleoG. (2018). “Many-body quantum state tomography with neural networks”. Nature Physics.14.https://doi.org/10.1038/s41567-018-0048-5.Search in Google Scholar
Q. Xu and S. Xu (2018). “Neural network state estimation for full quantum state tomography. arXiv:1811.06654 https://doi.org/10.1103/PhysRevA.106.012409.XuQ.XuS. (2018). “Neural network state estimation for full quantum state tomography.arXiv:1811.06654.https://doi.org/10.1103/PhysRevA.106.012409.Search in Google Scholar
G. Sentis, A. Monras, R. Munoz Tapia, J. Calsamiglia, and E. Bagan (2019). “Unsupervised classification of quantum data”. Physical Review X, 9, 041029. https://doi.org/10.1103/PhysRevX.9.041029.SentisG.MonrasA.Munoz TapiaR.CalsamigliaJ.BaganE. (2019). “Unsupervised classification of quantum data”. Physical Review X.9.041029.https://doi.org/10.1103/PhysRevX.9.041029.Search in Google Scholar
N. Liu and P. Rebentrost (2018). “Quantum machine learning for quantum anomaly detection”. Physical Review A, 97, 042315. https://doi.org/10.1103/PhysRevA.97.042315.LiuN.RebentrostP. (2018). “Quantum machine learning for quantum anomaly detection”. Physical Review A.97.042315.https://doi.org/10.1103/PhysRevA.97.042315.Search in Google Scholar
S. Wang et al (2021). “Noise-induced barren plateaus in variational quantum algorithms”. Nature Communications 12: 1, 6961. https://doi.org/10.1038/s41467-021-27045-6.WangS. (2021). “Noise-induced barren plateaus in variational quantum algorithms”. Nature Communications.12: 1.6961.https://doi.org/10.1038/s41467-021-27045-6.Search in Google Scholar
J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven (2018). “Barren plateaus in quantum neural network training landscapes”. Nature Communications, 9. https://doi.org/10.1038/s41467-018-07090-4.McCleanJ. R.BoixoS.SmelyanskiyV. N.BabbushR.NevenH. (2018). “Barren plateaus in quantum neural network training landscapes”. Nature Communications.9.https://doi.org/10.1038/s41467-018-07090-4.Search in Google Scholar
M. Cerezo, A. Sone, T. Volko, L. Cincio, and P. J. Coles (2021). “Cost function dependent barren plateaus in shallow parametrized quantum circuits”. Nature Communications, 12: 1. https://doi.org/10.1038/s41467-021-21728-w.CerezoM.SoneA.VolkoT.CincioL.ColesP. J. (2021). “Cost function dependent barren plateaus in shallow parametrized quantum circuits”. Nature Communications.12: 1.https://doi.org/10.1038/s41467-021-21728-w.Search in Google Scholar
A. Arrasmith et al (2022). “Equivalence of quantum barren plateaus to cost concentration and narrow gorges”. Quantum Science and Technology 7: 4, 045015. https://doi.org/10.1088/2058-9565/ac7d06.ArrasmithA. (2022). “Equivalence of quantum barren plateaus to cost concentration and narrow gorges”. Quantum Science and Technology.7: 4.045015.https://doi.org/10.1088/2058-9565/ac7d06.Search in Google Scholar
M. Cerezo et al (2022). “Challenges and opportunities in quantum machine learning”. Nature Computational Science 2: 9, 567–576. https://doi.org/10.1038/s43588-022-00311-3.CerezoM. (2022). “Challenges and opportunities in quantum machine learning”. Nature Computational Science.2: 9.567–576.https://doi.org/10.1038/s43588-022-00311-3.Search in Google Scholar
S. Herbst (2024). “Beyond 0s and 1s: Exploring the impact of noise, data encoding, and hyperparameter optimization in quantum machine learning”. Diploma Thesis Technische Universitat Wien.HerbstS. (2024). “Beyond 0s and 1s: Exploring the impact of noise, data encoding, and hyperparameter optimization in quantum machine learning”. Diploma Thesis.Technische Universitat Wien.Search in Google Scholar
D. Suchan (2024). “Hyperparameter tuning for quantum machine learning”. Diploma Thesis Technische Universitat Wien.SuchanD. (2024). “Hyperparameter tuning for quantum machine learning”. Diploma Thesis.Technische Universitat Wien.Search in Google Scholar
L. Alchieri et al (2021). “An introduction to quantum machine learning: from quantum logic to quantum deep learning”. Quantum Machine Intelligence 3: 2, 28. https://doi.org/10.1007/s42484-021-00056-8.AlchieriL. (2021). “An introduction to quantum machine learning: from quantum logic to quantum deep learning”. Quantum Machine Intelligence.3: 2.28.https://doi.org/10.1007/s42484-021-00056-8.Search in Google Scholar
N. Wiebe (2020). “Key questions for the quantum machine learner to ask themselves”. New Journal of Physics, 22, 091001. https://doi.org/10.1088/1367-2630/abac39WiebeN. (2020). “Key questions for the quantum machine learner to ask themselves”. New Journal of Physics.22.091001.https://doi.org/10.1088/1367-2630/abac39Search in Google Scholar
D. Ventura and T. Martinez (2000). “Quantum associative memory”. Information Sciences, 126, 273. https://doi.org/10.1016/S0020-0255(99)00101-2.VenturaD.MartinezT. (2000). “Quantum associative memory”. Information Sciences.126.273.https://doi.org/10.1016/S0020-0255(99)00101-2.Search in Google Scholar
R. LaRose and B. Coyle (2020). “Robust data encodings for quantum classifiers”. Physical Review A, 102. https://doi.org/10.1103/PhysRevA.102.032420.LaRoseR.CoyleB. (2020). “Robust data encodings for quantum classifiers”. Physical Review A.102.https://doi.org/10.1103/PhysRevA.102.032420.Search in Google Scholar
M. Schuld and F. Petruccione (2018). Supervised Learning with Quantum Computers Springer, DOI: 10.1007/978-3-319-96424-9.SchuldM.PetruccioneF. (2018). Supervised Learning with Quantum Computers.Springer.10.1007/978-3-319-96424-9.Open DOISearch in Google Scholar
H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean (2021). “Power of data in quantum machine learning”. Nature Communications, 12. https://doi.org/10.1038/s41467-021-22 539-9.HuangH.-Y.BroughtonM.MohseniM.BabbushR.BoixoS.NevenH.McCleanJ. R. (2021). “Power of data in quantum machine learning”. Nature Communications.12.https://doi.org/10.1038/s41467-021-22 539-9.Search in Google Scholar
M. Schuld and N. Killoran (2019). “Quantum machine learning in feature Hilbert spaces”. Physical Review Letters, 122, 040504. https://doi.org/10.1103/PhysRevLett.122.040504.SchuldM.KilloranN. (2019). “Quantum machine learning in feature Hilbert spaces”. Physical Review Letters.122.040504.https://doi.org/10.1103/PhysRevLett.122.040504.Search in Google Scholar
A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt, and M. Leib (2021). “Layerwise learning for quantum neural networks”. Quantum Machine Intelligence, 3, 1. https://doi.org/10.1007/s42484-020-00036-4.SkolikA.McCleanJ. R.MohseniM.van der SmagtP.LeibM. (2021). “Layerwise learning for quantum neural networks”. Quantum Machine Intelligence.3.1.https://doi.org/10.1007/s42484-020-00036-4.Search in Google Scholar
T. Haug, C. N. Self, and M. S. Kim (2023). “Quantum machine learning of large datasets using randomized measurements”. Machine Learning: Science and Technology, 4 015005. https://doi.org/10.1088/2632-2153/acb0b4.HaugT.SelfC. N.KimM. S. (2023). “Quantum machine learning of large datasets using randomized measurements”. Machine Learning: Science and Technology.4015005.https://doi.org/10.1088/2632-2153/acb0b4.Search in Google Scholar
Y. Du, Y. Qian, and D. Tao (2021). “Accelerating variational quantum algorithms with multiple quantum processors”. arXiv:2106.12819 https://doi.org/10.48550/arXiv.2106.12819.DuY.QianY.TaoD. (2021). “Accelerating variational quantum algorithms with multiple quantum processors”. arXiv:2106.12819.https://doi.org/10.48550/arXiv.2106.12819.Search in Google Scholar
C. Cade, L. Mineh, A. Montanaro, and S. Stanisic (2020). “Strategies for solving the Fermi-Hubbard model on near-term quantum computers”. Physical Review B, 102. https://doi.org/10.1103/PhysRevB.102.235122.CadeC.MinehL.MontanaroA.StanisicS. (2020). “Strategies for solving the Fermi-Hubbard model on near-term quantum computers”. Physical Review B.102.https://doi.org/10.1103/PhysRevB.102.235122.Search in Google Scholar
R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla, Y. B. Kim, and H. Yuen (2020). “Exploring entanglement and optimization within the Hamiltonian Variational Ansatz”. PRX Quantum, 1. https://doi.org/10.1103/PRXQuantum.1.020319.WiersemaR.ZhouC.de SerevilleY.CarrasquillaJ. F.KimY. B.YuenH. (2020). “Exploring entanglement and optimization within the Hamiltonian Variational Ansatz”. PRX Quantum.1.https://doi.org/10.1103/PRXQuantum.1.020319.Search in Google Scholar
M. Weigold, J. Barzen, F. Leymann, and M. Salm (2020). “Data encoding patterns for quantum computing” in Proceedings of the 27th Conference on Pattern Languages of Programs https://doi.org/10.5555/3511065.3511068.WeigoldM.BarzenJ.LeymannF.SalmM. (2020). “Data encoding patterns for quantum computing”, in Proceedings of the 27th Conference on Pattern Languages of Programs.https://doi.org/10.5555/3511065.3511068.Search in Google Scholar
M. Weigold, J. Barzen, F. Leymann, and M. Salm (2021). “Expanding data encoding patterns for quantum algorithms”, in 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C) pp. 95–101. https://doi.org/10.1109/ICSA-C52384.2021.00025.WeigoldM.BarzenJ.LeymannF.SalmM. (2021). “Expanding data encoding patterns for quantum algorithms”, in 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C) pp. 95–101.https://doi.org/10.1109/ICSA-C52384.2021.00025.Search in Google Scholar
M. Schuld, M. Fingerhuth and F. Petruccione (2017). “Implementing a distance-based classifier with a quantum interference circuit”. Europhysics Letters, 119, 60002. https://doi.org/10.1209/0295-5075/119/60002SchuldM.FingerhuthM.PetruccioneF. (2017). “Implementing a distance-based classifier with a quantum interference circuit”. Europhysics Letters.119.60002.https://doi.org/10.1209/0295-5075/119/60002Search in Google Scholar
J. Romero, J.P. Olson, and A. Aspuru-Guzik (2017). “Quantum autoencoders for efficient compression of quantum data”. Quantum Science and Technology, 2, 045001. https://doi.org/10.1088/2058-9565/aa8072.RomeroJ.OlsonJ.P.Aspuru-GuzikA. (2017). “Quantum autoencoders for efficient compression of quantum data”. Quantum Science and Technology.2.045001.https://doi.org/10.1088/2058-9565/aa8072.Search in Google Scholar
M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko (2018). “Quantum Boltzmann Machine”. Physical Review X, 8, 021050. https://doi.org/10.1103/PhysRevX.8.021050.AminM. H.AndriyashE.RolfeJ.KulchytskyyB.MelkoR. (2018). “Quantum Boltzmann Machine”. Physical Review X.8.021050.https://doi.org/10.1103/PhysRevX.8.021050.Search in Google Scholar
R. Moretti, A. Giachero, V. Radescu, M. Grossi (2024). “Enhanced feature encoding and classification on distributed quantum hardware”. arXiv:2412.01664 https://doi.org/10.48550/arXiv.2412.01664.MorettiR.GiacheroA.RadescuV.GrossiM. (2024). “Enhanced feature encoding and classification on distributed quantum hardware”. arXiv:2412.01664.https://doi.org/10.48550/arXiv.2412.01664.Search in Google Scholar
T. Tomesh, P. Gokhale, E. R. Anschuetz, and F. T. Chong (2021). “Coreset clustering on small quantum computers”. Electronics, 10. https://doi.org/10.3390/electronics10141690.TomeshT.GokhaleP.AnschuetzE. R.ChongF. T. (2021). “Coreset clustering on small quantum computers”. Electronics.10.https://doi.org/10.3390/electronics10141690.Search in Google Scholar
A. W. Harrow (2020). “Small quantum computers and large classical data sets”. arXiv:2004.00026 https://doi.org/10.48550/arXiv.2004.00026.HarrowA. W. (2020). “Small quantum computers and large classical data sets”. arXiv:2004.00026.https://doi.org/10.48550/arXiv.2004.00026.Search in Google Scholar
C. N. Self, K. E. Khosla, A. W. R. Smith, F. Sauvage, P. D. Haynes, J. Knolle, F. Mintert, and M. S. Kim (2021). “Variational quantum algorithm with information sharing”. npj Quantum Information, 7. https://doi.org/10.1038/s41534-021-00452-9.SelfC. N.KhoslaK. E.SmithA. W. R.SauvageF.HaynesP. D.KnolleJ.MintertF.KimM. S. (2021). “Variational quantum algorithm with information sharing”. npj Quantum Information.7.https://doi.org/10.1038/s41534-021-00452-9.Search in Google Scholar
Y. Du, Y. Qian, X. Wu, D. Tao (2022). “A distributed learning scheme for variational quantum algorithms”. IEEE Transactions on Quantum Engineering, 3, 116. https://doi.org/10.1109/TQE.2022.3175267.DuY.QianY.WuX.TaoD. (2022). “A distributed learning scheme for variational quantum algorithms”. IEEE Transactions on Quantum Engineering.3.116.https://doi.org/10.1109/TQE.2022.3175267.Search in Google Scholar
J. F. Fitzsimons (2017). “Private quantum computation: an introduction to blind quantum computing and related protocols”. npj Quantum Information 3, 23. https://doi.org/10.1038/s41534-017-0025-3FitzsimonsJ. F. (2017). “Private quantum computation: an introduction to blind quantum computing and related protocols”. npj Quantum Information.3.23.https://doi.org/10.1038/s41534-017-0025-3Search in Google Scholar
R. Kaewpuang, M. Xu, D. T. Hoang et al (2023). “Elastic entangled pair and qubit resource management in quantum cloud computing”. arXiv:2307.13185 https://doi.org/10.48550/arXiv.2307.13185.KaewpuangR.XuM.HoangD. T. (2023). “Elastic entangled pair and qubit resource management in quantum cloud computing”. arXiv:2307.13185.https://doi.org/10.48550/arXiv.2307.13185.Search in Google Scholar
M. A. Serrano, L. E. Sanchez, A. Santos-Olmo et al (2023). “Minimizing incident response time in realworld scenarios using quantum computing”. Software Quality Journal 32, 163192. https://doi.org/10.1007/s11219-023-09632-6.SerranoM. A.SanchezL. E.Santos-OlmoA. (2023). “Minimizing incident response time in realworld scenarios using quantum computing”. Software Quality Journal.32.163192.https://doi.org/10.1007/s11219-023-09632-6.Search in Google Scholar
P. J. Karalekas, T. Ryan, R. S. Smith (2020). “A quantum-classical cloud platform optimized for variational hybrid algorithms”. Quantum Science and Technology 5, 2. https://doi.org/10.1088/2058-9565/ab7559.KaralekasP. J.RyanT.SmithR. S. (2020). “A quantum-classical cloud platform optimized for variational hybrid algorithms”. Quantum Science and Technology.5.2.https://doi.org/10.1088/2058-9565/ab7559.Search in Google Scholar
Y. Ding and A. Javadi-Abhari. (2022). “Quantum and post-Moore’s law computing”. IEEE Internet Computing 26: 1, 56. https://doi.org/10.1109/MIC.2021.3133675.DingY.Javadi-AbhariA. (2022). “Quantum and post-Moore’s law computing”. IEEE Internet Computing.26: 1.56.https://doi.org/10.1109/MIC.2021.3133675.Search in Google Scholar
D. Subhi and L. Bacsardi (2023). “Using quantum nodes connected via the quantum cloud to perform IOT quantum network”. Condensed Matter 8: 1, p. 24. https://doi.org/10.3390/condmat8010024.SubhiD.BacsardiL. (2023). “Using quantum nodes connected via the quantum cloud to perform IOT quantum network”. Condensed Matter.8: 1 p. 24 https://doi.org/10.3390/condmat8010024.Search in Google Scholar
IBM Quantum Computing Services, IBM (2023). https://quantum-computing.ibm.com/IBM Quantum Computing Services, IBM (2023). quantum-computinghttps://quantum-computing.ibm.com/Search in Google Scholar
IBM Cloud, IBM (2024). https://www.ibm.com/cloudIBM Cloud, IBM (2024). IBM Cloudhttps://www.ibm.com/cloudSearch in Google Scholar
Google Cloud, Google (2024). Google Quantum AI. https://quantumai.google/Google Cloud, Google (2024). Google Quantum AI.https://quantumai.google/Search in Google Scholar
IonQ (2022). IonQ Cloud Service. https://ionq.com/IonQ (2022). IonQ Cloud Service.https://ionq.com/Search in Google Scholar
Quantinuum Cloud Service, Quantinuum (2022). https://www.quantinuum.com/.Quantinuum Cloud Service, Quantinuum (2022). Quantinuum Cloud Servicehttps://www.quantinuum.com/.quantinuumSearch in Google Scholar
Pasqal: Programmable Atomic Arrays (2024). https://www.pasqal.com/.Pasqal: Programmable Atomic Arrays (2024). https://www.pasqal.com/.Programmable Atomic ArraysSearch in Google Scholar
Azure Quantum, Microsoft (2023). https://azure.microsoft.com/en-us/services/quantumAzure Quantum, Microsoft (2023). Azure Quantumhttps://azure.microsoft.com/en-us/services/quantumSearch in Google Scholar
QuEra, Quantum Computing with Neutral Atoms (2024). https://www.quera.com/QuEra, Quantum Computing with Neutral Atoms (2024). Quantum Computing with Neutralhttps://www.quera.com/Search in Google Scholar
C. Gonzalez (2021). “Cloud based QC with Amazon Braket”. Digitale Welt 5: 2, 14–17. https://doi.org/10.1007/s42354-021-0330-z.GonzalezC. (2021). “Cloud based QC with Amazon Braket”. Digitale Welt.5: 2.14–17.https://doi.org/10.1007/s42354-021-0330-z.Search in Google Scholar
Amazon Braket, Amazon (2024). https://aws.amazon.com/braket/Amazon Braket, Amazon (2024). Amazon Brakethttps://aws.amazon.com/braket/Search in Google Scholar
PlanQK (2020). https://www.planqk.de/PlanQK (2020). PlanQKhttps://www.planqk.de/Search in Google Scholar
C. Linnhoff-Popien (2020). “PlanQK: Quantum computing meets artificial intelligence: How to make an ambitious idea reality”. Digitale Welt 4: 2, 28–35. https://doi.org/10.1007/s42354-020-0257-9.Linnhoff-PopienC. (2020). “PlanQK: Quantum computing meets artificial intelligence: How to make an ambitious idea reality”. Digitale Welt.4: 2.28–35.https://doi.org/10.1007/s42354-020-0257-9.Search in Google Scholar
Quantum Inspire, De Voorhoede (2024). https://www.quantum-inspire.com/Quantum Inspire, De Voorhoede (2024). Quantum Inspirehttps://www.quantum-inspire.com/Search in Google Scholar
QuantumPath. https://www.quantumpath.es/QuantumPath.QuantumPathhttps://www.quantumpath.es/Search in Google Scholar
J. L. Hevia, G. Peterssen, M. Piattini (2021). “QuantumPath: A quantum software development platform”. Software: Practice and Experience 1–14. https://doi.org/10.1002/spe.3064.HeviaJ. L.PeterssenG.PiattiniM. (2021). “QuantumPath: A quantum software development platform”. Software: Practice and Experience.1–14.https://doi.org/10.1002/spe.3064.Search in Google Scholar
Strangeworks Quantum Computing Platform, Strangeworks (2022). https://strangeworks.com/Strangeworks Quantum Computing Platform, Strangeworks (2022). Strangeworks Quantum Computing Platformhttps://strangeworks.com/Search in Google Scholar
QFaaS, Github (2022). https://github.com/Cloudslab/qfaasQFaaS, Github (2022). QFaaS, Githubhttps://github.com/Cloudslab/qfaasSearch in Google Scholar
H. T. Nguyen, M. Usman, and R. Buyya (2024). “QFaaS: A serverless function-as-a-service framework for quantum computing”. Future Generation Computer Systems 154, 281–300. https://doi.org/10.1016/j.future.2024.01.018.NguyenH. T.UsmanM.BuyyaR. (2024). “QFaaS: A serverless function-as-a-service framework for quantum computing”. Future Generation Computer Systems.154.281–300.https://doi.org/10.1016/j.future.2024.01.018.Search in Google Scholar
1Qloud Optimization Platform, 1QBit (2024). https://1qbit.com/1qloud/1Qloud Optimization Platform, 1QBit (2024). 1Qloud Optimization Platformhttps://1qbit.com/1qloud/Search in Google Scholar
Qemist Cloud, Good Chemistry Co (2024). https://goodchemistry.com/qemist-cloud/Qemist Cloud, Good Chemistry Co (2024). Qemist Cloudhttps://goodchemistry.com/qemist-cloud/Search in Google Scholar
N. Aslam, H. Zhou, E. K. Urbach, M. J. Turner, R. L. Walsworth, M. D. Lukin, and H. Park (2023). “Quantum sensors for biomedical applications. Nature Reviews Physics 5: 3, 157–169. https://doi.org/10.1038/s42254-023-00558-3.AslamN.ZhouH.UrbachE. K.TurnerM. J.WalsworthR. L.LukinM. D.ParkH. (2023). “Quantum sensors for biomedical applications.Nature Reviews Physics.5: 3.157–169.https://doi.org/10.1038/s42254-023-00558-3.Search in Google Scholar
L. Thiel, D. Rohner, M. Ganzhorn, P. Appel, E. Neu, B. Muller, R. Kleiner, D. Koelle, and P. Maletinsky (2016). “Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer”. Nature Nanotechnology, 11: 8, 677–681. https://doi.org/10.1038/nnano.2016.63.ThielL.RohnerD.GanzhornM.AppelP.NeuE.MullerB.KleinerR.KoelleD.MaletinskyP. (2016). “Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer”. Nature Nanotechnology.11: 8.677–681.https://doi.org/10.1038/nnano.2016.63.Search in Google Scholar
H. M. J. Boffin, G. Hussain, J.-P. Berger, and L. Schmidtobreick (2016). “Astronomy at high angular resolution”. Astrophysics and Space Science Library 439. https://doi.org/10.1007/978-3-319-39739-9.BoffinH. M. J.HussainG.BergerJ.-P.SchmidtobreickL. (2016). “Astronomy at high angular resolution”. Astrophysics and Space Science Library.439.https://doi.org/10.1007/978-3-319-39739-9.Search in Google Scholar
Y. Zhang et al (2021). “QED driven QAOA for networkflow optimization”. Quantum 5: 510. https://doi.org/10.22331/q-2021-07-27-510.ZhangY. (2021). “QED driven QAOA for networkflow optimization”. Quantum.5: 510.https://doi.org/10.22331/q-2021-07-27-510.Search in Google Scholar
B. Chevalier, W. Roga, M. Takeoka (2024). “Compressed sensing enhanced by a quantum approximate optimization algorithm”. Physical Review A 110, 062410. https://doi.org/10.1103/PhysRevA.110.062410.ChevalierB.RogaW.TakeokaM. (2024). “Compressed sensing enhanced by a quantum approximate optimization algorithm”. Physical Review A.110.062410.https://doi.org/10.1103/PhysRevA.110.062410.Search in Google Scholar
J. Li, M. Alam, and S. Ghosh (2023). “Large-scale quantum approximate optimization via divide-and-conquer”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42: 6, 18521860. https://doi.org/10.1109/TCAD.2022.3212196.LiJ.AlamM.GhoshS. (2023). “Large-scale quantum approximate optimization via divide-and-conquer”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.42: 6.18521860.https://doi.org/10.1109/TCAD.2022.3212196.Search in Google Scholar
G. D. Kahanamoku-Meyer et al (2022). “Classically verifiable quantum advantage from a computational Bell test”. Nature Physics 18: 8, 918–924. https://doi.org/10.1038/s41567-022-01643-7.Kahanamoku-MeyerG. D. (2022). “Classically verifiable quantum advantage from a computational Bell test”. Nature Physics.18: 8.918–924.https://doi.org/10.1038/s41567-022-01643-7.Search in Google Scholar
Z. Brakerski et al (2021). “A cryptographic test of quantumness and certifiable randomness from a single quantum device”. Journal of the ACM (JACM) 68: 5, 1–47. https://doi.org/10.1145/3441309.BrakerskiZ. (2021). “A cryptographic test of quantumness and certifiable randomness from a single quantum device”. Journal of the ACM (JACM).68: 5.1–47.https://doi.org/10.1145/3441309.Search in Google Scholar
H. R. Grimsley et al (2019). “An adaptive variational algorithm for exact molecular simulations on a quantum computer”. Nature Communications 10: 1, 3007. https://doi.org/10.1038/s41467-019-10988-2.GrimsleyH. R. (2019). “An adaptive variational algorithm for exact molecular simulations on a quantum computer”. Nature Communications.10: 1.3007.https://doi.org/10.1038/s41467-019-10988-2.Search in Google Scholar
Y.-F. Niu, S. Zhang, C. Ding, W.-S. Bao, and H.-L. Huang (2023). “Parameter-parallel distributed variational quantum algorithm”. SciPost Physics 14, 5. https://doi.org/10.21468/SciPostPhys.14.5.132.NiuY.-F.ZhangS.DingC.BaoW.-S.HuangH.-L. (2023). “Parameter-parallel distributed variational quantum algorithm”. SciPost Physics.14.5.https://doi.org/10.21468/SciPostPhys.14.5.132.Search in Google Scholar
D. Bluvstein et al (2024). “Logical quantum processor based on reconfigurable atom arrays”. Nature 626: 7997, 58–65. https://doi.org/10.1038/s41586-023-06927-3.BluvsteinD. (2024). “Logical quantum processor based on reconfigurable atom arrays”. Nature.626: 7997.58–65.https://doi.org/10.1038/s41586-023-06927-3.Search in Google Scholar
J. Bartusek et al (2023). “Obfuscation of pseudo-deterministic quantum circuits”, in Proceedings of the 55th Annual ACM Symposium on Theory of Computing 1567–1578. https://doi.org/10.1145/3564246.3585179BartusekJ. (2023). “Obfuscation of pseudo-deterministic quantum circuits”, in Proceedings of the 55th Annual ACM Symposium on Theory of Computing.1567–1578.https://doi.org/10.1145/3564246.3585179Search in Google Scholar
J. Rajakumar et al (2024). “Polynomial-time classical simulation of noisy IQP circuits with constant depth”. arXiv:2403.14607 https://doi.org/10.48550/arXiv.2403.14607.RajakumarJ. (2024). “Polynomial-time classical simulation of noisy IQP circuits with constant depth”. arXiv:2403.14607.https://doi.org/10.48550/arXiv.2403.14607.Search in Google Scholar
S. Chen, J. Cotler, H.-Y. Huang, and J. Li (2023). “The complexity of NISQ”. Nature Communications 14, 6001. https://doi.org/10.1038/s41467-023-41217-6.ChenS.CotlerJ.HuangH.-Y.LiJ. (2023). “The complexity of NISQ”. Nature Communications.14.6001.https://doi.org/10.1038/s41467-023-41217-6.Search in Google Scholar
V. Dunjko and H. J. Briegel (2018). “Machine learning and artificial intelligence in the quantum domain”. Reports on Progress in Physics 81, 074001. https://doi.org/10.1088/1361-6633/aab406DunjkoV.BriegelH. J. (2018). “Machine learning and artificial intelligence in the quantum domain”. Reports on Progress in Physics.81.074001.https://doi.org/10.1088/1361-6633/aab406Search in Google Scholar
J. A. Cortese, Timothy M. Braje (2018). “Loading classical data into a quantum computer”. arXiv:1803.01958 https://doi.org/10.48550/arXiv.1803.01958.CorteseJ. A.BrajeTimothy M. (2018). “Loading classical data into a quantum computer”. arXiv:1803.01958.https://doi.org/10.48550/arXiv.1803.01958.Search in Google Scholar
Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik (2017). “Quantum neuron: An elementary building block for machine learning on quantum computers”. arXiv:1711.11240 https://doi.org/10.48550/arXiv.1711.11240.CaoY.GuerreschiG. G.Aspuru-GuzikA. (2017). “Quantum neuron: An elementary building block for machine learning on quantum computers”. arXiv:1711.11240.https://doi.org/10.48550/arXiv.1711.11240.Search in Google Scholar
K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii (2018). “Quantum circuit learning”. Physical Review A 98. https://doi.org/10.1103/PhysRevA.98.032309.MitaraiK.NegoroM.KitagawaM.FujiiK. (2018). “Quantum circuit learning”. Physical Review A.98.https://doi.org/10.1103/PhysRevA.98.032309.Search in Google Scholar
J. Allcock, C.-Y. Hsieh, I. Kerenidis, and S. Zhang (2020). “Quantum algorithms for feedforward neural networks”. ACM Transactions on Quantum Computing, 1. https://doi.org/10.1145/3411466.AllcockJ.HsiehC.-Y.KerenidisI.ZhangS. (2020). “Quantum algorithms for feedforward neural networks”. ACM Transactions on Quantum Computing.1.https://doi.org/10.1145/3411466.Search in Google Scholar
M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe (2020). “Circuit-centric quantum classifiers”. Physical Review A, 101. https://doi.org/10.1103/PhysRevA.101.032308.SchuldM.BocharovA.SvoreK. M.WiebeN. (2020). “Circuit-centric quantum classifiers”. Physical Review A.101.https://doi.org/10.1103/PhysRevA.101.032308.Search in Google Scholar
Q.-X. Xiea, Y. Zhaobc (2024). “A novel quantum-classical hybrid algorithm for determining eigenstate energies in quantum chemistry”. arXiv:2406.00296 https://doi.org/10.48550/arXiv.2406.00296.XieaQ.-X.ZhaobcY. (2024). “A novel quantum-classical hybrid algorithm for determining eigenstate energies in quantum chemistry”. arXiv:2406.00296.https://doi.org/10.48550/arXiv.2406.00296.Search in Google Scholar
C. C. Hian (2024). Resource-Efficient Quantum Algorithms for Quantum Chemistry. PhD Dissertation, National University of Singapore.HianC. C. (2024). Resource-Efficient Quantum Algorithms for Quantum Chemistry PhD Dissertation, National University of Singapore.Search in Google Scholar
J. Bausch (2018). “Classifying data using near-term quantum devices”. International Journal of Quantum Information, 16, 8. https://doi.org/10.1142/S0219749918400014.BauschJ. (2018). “Classifying data using near-term quantum devices”. International Journal of Quantum Information.16.8.https://doi.org/10.1142/S0219749918400014.Search in Google Scholar
M. L. Wall et al (2021). “Generative machine learning with tensor networks: Benchmarks on near-term quantum computers”. Physical Review Research, 3: 2. https://doi.org/10.1103/PhysRevResearch.3.023010.WallM. L. (2021). “Generative machine learning with tensor networks: Benchmarks on near-term quantum computers”. Physical Review Research.3: 2 https://doi.org/10.1103/PhysRevResearch.3.023010.Search in Google Scholar
B. Coecke et al (2020). “Foundations for near-term quantum natural language processing”. arXiv:2012.03755 https://doi.org/10.48550/arXiv.2012.03755.CoeckeB. (2020). “Foundations for near-term quantum natural language processing”. arXiv:2012.03755.https://doi.org/10.48550/arXiv.2012.03755.Search in Google Scholar
M. Alam et al (2022). “QNet: A scalable and noise-resilient quantum neural network architecture for noisy intermediate-scale quantum computers”. Frontiers in Physics 9. https://doi.org/10.3389/fphy.2021.755139.AlamM. (2022). “QNet: A scalable and noise-resilient quantum neural network architecture for noisy intermediate-scale quantum computers”. Frontiers in Physics.9.https://doi.org/10.3389/fphy.2021.755139.Search in Google Scholar
S. Lloyd and C. Weedbrook (2018). “Quantum generative adversarial learning”. Physical Review Letters, 121. https://doi.org/10.1103/PhysRevLett.121.040502.LloydS.WeedbrookC. (2018). “Quantum generative adversarial learning”. Physical Review Letters.121.https://doi.org/10.1103/PhysRevLett.121.040502.Search in Google Scholar
P.-L. Dallaire-Demers and N. Killoran (2018). “Quantum generative adversarial networks”. Physical Review A, 98, 012324. https://doi.org/10.1103/PhysRevA.98.012324.Dallaire-DemersP.-L.KilloranN. (2018). “Quantum generative adversarial networks”. Physical Review A.98.012324.https://doi.org/10.1103/PhysRevA.98.012324.Search in Google Scholar
C. Zoufal, A. Lucchi, and S. Woerner (2019). “Quantum generative adversarial networks for learning and loading random distributions”. npj Quantum Information, 5. https://doi.org/10.1038/s41534-019-0223-2.ZoufalC.LucchiA.WoernerS. (2019). “Quantum generative adversarial networks for learning and loading random distributions”. npj Quantum Information.5.https://doi.org/10.1038/s41534-019-0223-2.Search in Google Scholar
M. Henderson, S. Shakya, S. Pradhan, and T. Cook (2019). “Quanvolutional neural networks: powering image recognition with quantum circuits”. arXiv:1904.04767 https://doi.org/10.48550/arXiv.1904.04767.HendersonM.ShakyaS.PradhanS.CookT. (2019). “Quanvolutional neural networks: powering image recognition with quantum circuits”. arXiv:1904.04767.https://doi.org/10.48550/arXiv.1904.04767.Search in Google Scholar
J. Bausch (2020). “Recurrent quantum neural networks”, in H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (eds), Advances in Neural Information Processing Systems Curran Associates, Inc., 33, pp. 1368–1379. https://doi.org/10.48550/arXiv.2006.14619.BauschJ. (2020). “Recurrent quantum neural networks”, in LarochelleH.RanzatoM.HadsellR.BalcanM.LinH. (eds), Advances in Neural Information Processing Systems.Curran Associates, Inc, 33 pp. 1368–1379.https://doi.org/10.48550/arXiv.2006.14619.Search in Google Scholar
I. Kerenidis, J. Landman, and A. Prakash (2020). “Quantum algorithms for deep convolutional neural networks”. arXiv:1911.01117 https://doi.org/10.48550/arXiv.1911.01117.KerenidisI.LandmanJ.PrakashA. (2020). “Quantum algorithms for deep convolutional neural networks”. arXiv:1911.01117.https://doi.org/10.48550/arXiv.1911.01117.Search in Google Scholar
I. Cong, S. Choi, and M. D. Lukin (2019). “Quantum convolutional neural networks”. Nature Physics, 15, 1273. https://doi.org/10.1038/s41567-019-0648-8.CongI.ChoiS.LukinM. D. (2019). “Quantum convolutional neural networks”. Nature Physics.15.1273.https://doi.org/10.1038/s41567-019-0648-8.Search in Google Scholar
E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti (2019). “An initialization strategy for addressing barren plateaus in parametrized quantum circuits”. Quantum 3. https://doi.org/10.22331/q-2019-12-09-214.GrantE.WossnigL.OstaszewskiM.BenedettiM. (2019). “An initialization strategy for addressing barren plateaus in parametrized quantum circuits”. Quantum.3.https://doi.org/10.22331/q-2019-12-09-214.Search in Google Scholar
A. Pesah, M. Cerezo, S. Wang, T. Volko, A. T. Sornborger, and P. J. Coles (2021). “Absence of barren plateaus in quantum convolutional neural networks”. Physical Review X 11, 041011. https://doi.org/10.1103/PhysRevX.11.041011.PesahA.CerezoM.WangS.VolkoT.SornborgerA. T.ColesP. J. (2021). “Absence of barren plateaus in quantum convolutional neural networks”. Physical Review X.11.041011.https://doi.org/10.1103/PhysRevX.11.041011.Search in Google Scholar
Y. Ding, L. Lamata, M. Sanz, X. Chen, and E. Solano (2019). “Experimental implementation of a quantum autoencoder via quantum adders”. Advanced Quantum Technologies 2, 1800065. https://doi.org/10.1002/qute.201800065.DingY.LamataL.SanzM.ChenX.SolanoE. (2019). “Experimental implementation of a quantum autoencoder via quantum adders”. Advanced Quantum Technologies.2.1800065.https://doi.org/10.1002/qute.201800065.Search in Google Scholar
A. Rocchetto, S. Aaronson, S. Severini, G. Carvacho, D. Poderini, I. Agresti, M. Bentivegna, and F. Sciarrino (2019). “Experimental learning of quantum states”. Science Advances 5, eaau1946. https://doi.org/10.1126/sciadv.aau1946.RocchettoA.AaronsonS.SeveriniS.CarvachoG.PoderiniD.AgrestiI.BentivegnaM.SciarrinoF. (2019). “Experimental learning of quantum states”. Science Advances.5.eaau1946.https://doi.org/10.1126/sciadv.aau1946.Search in Google Scholar
B. Coyle, D. Mills, V. Danos, and E. Kashe (2020). “The born supremacy: Quantum advantage and training of an Ising Born Machine”. npj Quantum Information 6, 1. https://doi.org/10.1038/s41534-020-00 288-9.CoyleB.MillsD.DanosV.KasheE. (2020). “The born supremacy: Quantum advantage and training of an Ising Born Machine”. npj Quantum Information.6.1.https://doi.org/10.1038/s41534-020-00 288-9.Search in Google Scholar
M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam, and A. Perdomo-Ortiz (2019). “A generative modeling approach for benchmarking and training shallow quantum circuits”. npj Quantum Information 5, 1. https://doi.org/10.1038/s41534-019-0157-8.BenedettiM.Garcia-PintosD.PerdomoO.Leyton-OrtegaV.NamY.Perdomo-OrtizA. (2019). “A generative modeling approach for benchmarking and training shallow quantum circuits”. npj Quantum Information.5.1.https://doi.org/10.1038/s41534-019-0157-8.Search in Google Scholar
F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni (2019). “An artificial neuron implemented on an actual quantum processor”. npj Quantum Information 5, 1. https://doi.org/10.1038/s41534-019-0140-4.TacchinoF.MacchiavelloC.GeraceD.BajoniD. (2019). “An artificial neuron implemented on an actual quantum processor”. npj Quantum Information.5.1.https://doi.org/10.1038/s41534-019-0140-4.Search in Google Scholar
E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic, A. G. Green, and S. Severini (2018). “Hierarchical quantum classifiers”. npj Quantum Information 4, 1. https://doi.org/10.1038/s41534-018-0116-9.GrantE.BenedettiM.CaoS.HallamA.LockhartJ.StojevicV.GreenA. G.SeveriniS. (2018). “Hierarchical quantum classifiers”. npj Quantum Information.4.1.https://doi.org/10.1038/s41534-018-0116-9.Search in Google Scholar
D. Riste, M. P. Da Silva, C. A. Ryan, A. W. Cross, A. D. Corcoles, J. A. Smolin, J. M. Gambetta, J. M. Chow, and B. R. Johnson (2017). “Demonstration of quantum advantage in machine learning”. npj Quantum Information 3, 1. https://doi.org/10.1038/s41534-017-0017-3.RisteD.Da SilvaM. P.RyanC. A.CrossA. W.CorcolesA. D.SmolinJ. A.GambettaJ. M.ChowJ. M.JohnsonB. R. (2017). “Demonstration of quantum advantage in machine learning”. npj Quantum Information.3.1.https://doi.org/10.1038/s41534-017-0017-3.Search in Google Scholar
J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong, et al (2017). “Unsupervised machine learning on a hybrid quantum computer”. arXiv:1712.05771 https://doi.org/10.48550/arXiv.1712.05771.OtterbachJ. S.ManentiR.AlidoustN.BestwickA.BlockM.BloomB.CaldwellS.DidierN.FriedE. S.HongS. (2017). “Unsupervised machine learning on a hybrid quantum computer”. arXiv:1712.05771.https://doi.org/10.48550/arXiv.1712.05771.Search in Google Scholar
B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, M. Troyer, and K. Svore (2020). “Quantum programming languages”. Nature Reviews Physics 2: 12, 709–722. https://doi.org/10.1038/s42254-020-00245-7.HeimB.SoekenM.MarshallS.GranadeC.RoettelerM.GellerA.TroyerM.SvoreK. (2020). “Quantum programming languages”. Nature Reviews Physics.2: 12.709–722.https://doi.org/10.1038/s42254-020-00245-7.Search in Google Scholar
A. Tavakoli, A. Pozas-Kerstjens, P. Brown, M. Araujo (2024). “Semidefinite programming relaxations for quantum correlations”. Reviews of Modern Physics, 96, 045006. https://doi.org/10.1103/RevModPhys.96.045006.TavakoliA.Pozas-KerstjensA.BrownP.AraujoM. (2024). “Semidefinite programming relaxations for quantum correlations”. Reviews of Modern Physics.96.045006.https://doi.org/10.1103/RevModPhys.96.045006.Search in Google Scholar
R. LaRose (2019). “Overview and comparison of gate level quantum software platforms”. Quantum 3, 130. https://doi.org/10.22331/q-2019-03-25-130.LaRoseR. (2019). “Overview and comparison of gate level quantum software platforms”. Quantum.3.130.https://doi.org/10.22331/q-2019-03-25-130.Search in Google Scholar
M. Fingerhuth, T. Babej, and P. Wittek (2018). “Open source software in quantum computing”. PloS One 13: 12, e0208561. https://doi.org/10.1371/journal.pone.0208561.FingerhuthM.BabejT.WittekP. (2018). “Open source software in quantum computing”. PloS One.13: 12.e0208561.https://doi.org/10.1371/journal.pone.0208561.Search in Google Scholar
J. Zhao (2020). “Quantum software engineering: landscapes and horizons”. arXiv:2007.07047 https://doi.org/10.48550/arXiv.2007.07047.ZhaoJ. (2020). “Quantum software engineering: landscapes and horizons”. arXiv:2007.07047.https://doi.org/10.48550/arXiv.2007.07047.Search in Google Scholar
J. M. Murillo et al. (2024). “Quantum software engineering: roadmap and challenges ahead”. ACM Transactions on Software Engineering and Methodology https://doi.org/10.1145/3712002.MurilloJ. M. (2024). “Quantum software engineering: roadmap and challenges ahead”. ACM Transactions on Software Engineering and Methodology.https://doi.org/10.1145/3712002.Search in Google Scholar
J. Ray. (2022). “China at the nexus of AI and quantum computing”. Chinese Power and Artificial Intelligence: Perspectives and Challenges 155–172.RayJ. (2022). “China at the nexus of AI and quantum computing”. Chinese Power and Artificial Intelligence: Perspectives and Challenges.155–172.Search in Google Scholar
M. Ying, Y. Feng, R. Duan et al (2012). “Quantum programming: From theories to implementations”. Chinese Science Bulletin 57, 1903–1909. https://doi.org/10.1007/s11434-012-5147-6.YingM.FengY.DuanR. (2012). “Quantum programming: From theories to implementations”. Chinese Science Bulletin.57.1903–1909.https://doi.org/10.1007/s11434-012-5147-6.Search in Google Scholar
I. Kumara, W. J. Van Den Heuvel, D. A. Tamburri (2021). “Qsoc: Quantum service-oriented computing”, in Symposium and Summer School on Service-Oriented Computing 5263. https://doi.org/10.1007/978-3-030-87568-8 3.KumaraI.Van Den HeuvelW. J.TamburriD. A. (2021). “Qsoc: Quantum service-oriented computing”, in Symposium and Summer School on Service-Oriented Computing.5263.https://doi.org/10.1007/978-3-030-87568-8 3.Search in Google Scholar
J. Romero-Alvarez, J. Alvarado-Valiente, E. Moguel, J. Garcia-Alonso (2023). “Quantum web services: Development and deployment”, in Web Engineering Springer, Alicante, Spain, pp. 421–423. https://doi.org/10.1007/978-3-031-34444-239.Romero-AlvarezJ.Alvarado-ValienteJ.MoguelE.Garcia-AlonsoJ. (2023). “Quantum web services: Development and deployment”, in Web Engineering.Springer.Alicante, Spain pp. 421–423.https://doi.org/10.1007/978-3-031-34444-239.Search in Google Scholar
V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. Akash Narayanan, A. Asadi, et al (2018). “PennyLane: Automatic differentiation of hybrid quantum-classical computations”. arXiv:1811.04968 https://doi.org/10.48550/arXiv.1811.04968.BergholmV.IzaacJ.SchuldM.GogolinC.AhmedS.AjithV.AlamM. S.Alonso-LinajeG.Akash NarayananB.AsadiA. (2018). “PennyLane: Automatic differentiation of hybrid quantum-classical computations”. arXiv:1811.04968.https://doi.org/10.48550/arXiv.1811.04968.Search in Google Scholar
G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernandez, J. Carballo-Franquis, A. Chen, C.-F. Chen, et al (2019). “Qiskit: An open-source framework for quantum computing”. https://doi.org/10.5281/zenodo.2562111.AleksandrowiczG.AlexanderT.BarkoutsosP.BelloL.Ben-HaimY.BucherD.Cabrera-HernandezF. J.Carballo-FranquisJ.ChenA.ChenC.-F. (2019). “Qiskit: An open-source framework for quantum computing”.https://doi.org/10.5281/zenodo.2562111.Search in Google Scholar
H. Nagarajan, O. Lockwood and C. Coffrin (2021). “QuantumCircuitOpt: An open-source framework for provably optimal quantum circuit design”. arXiv:2111.11674 https://doi.org/10.48550/arXiv.2111.11674.NagarajanH.LockwoodO.CoffrinC. (2021). “QuantumCircuitOpt: An open-source framework for provably optimal quantum circuit design”. arXiv:2111.11674.https://doi.org/10.48550/arXiv.2111.11674.Search in Google Scholar
QuPanda: an open source quantum computing framework (2018). “Origin quantum”, https://github.com/OriginQ/QPanda-2QuPanda: an open source quantum computing framework (2018). “Origin quantum”, https://github.com/OriginQ/QPanda-2Search in Google Scholar
S. Diadamo, J. Notzel, B. Zanger, and M. M. Bese (2021). “Distributed quantum computing and network control for accelerated VQE”. IEEE Transactions on Quantum Engineering, 2, 1. https://doi.org/10.1109/TQE.2021.3057908.DiadamoS.NotzelJ.ZangerB.BeseM. M. (2021). “Distributed quantum computing and network control for accelerated VQE”. IEEE Transactions on Quantum Engineering.2.1.https://doi.org/10.1109/TQE.2021.3057908.Search in Google Scholar
T. Chatterjee, A. Das, S. I. Mohtashim, A. Saha, A. Chakrabarti (2022). “Qurzon: A prototype for a divide and conquer-based quantum compiler for distributed quantum systems”. SN Computer Science, 3, 4. https://doi.org/10.1007/s42979-022-01207-9.ChatterjeeT.DasA.MohtashimS. I.SahaA.ChakrabartiA. (2022). “Qurzon: A prototype for a divide and conquer-based quantum compiler for distributed quantum systems”. SN Computer Science.3.4.https://doi.org/10.1007/s42979-022-01207-9.Search in Google Scholar
W. Tang, M. Martonosi, ScaleQC (2022). “A scalable framework for hybrid computation on quantum and classical processors”. arXiv.2207.00933. https://doi.org/10.48550/arXiv.2207.00933.TangW.MartonosiM.ScaleQC (2022). “A scalable framework for hybrid computation on quantum and classical processors”. arXiv.2207.00933.https://doi.org/10.48550/arXiv.2207.00933.Search in Google Scholar
K. N. Smith, M. A. Perlin, P. Gokhale, P. Frederick, D. Owusu-Antwi, R. Rines et al. (2023). “Clifford-based circuit cutting for quantum simulation”. Proc. of the 50th Annual Int. Symp. on Computer Architecture (ISCA’23) ACM, New York, pp. 113. https://doi.org/10.1145/3579371.3589352.SmithK. N.PerlinM. A.GokhaleP.FrederickP.Owusu-AntwiD.RinesR. (2023). “Clifford-based circuit cutting for quantum simulation”. Proc. of the 50th Annual Int. Symp. on Computer Architecture (ISCA’23).ACM.New York pp. 113.https://doi.org/10.1145/3579371.3589352.Search in Google Scholar
“TorchQuantum: Fast library for quantum computing in PyTorch”. (2022). https://hanruiwanghw.wixsite. com/torchquantum“TorchQuantum: Fast library for quantum computing in PyTorch”. (2022). https://hanruiwanghw.wixsite. com/torchquantumSearch in Google Scholar
M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V. Isakov, P. Massey, R. Halavati, M. Y. Niu, A. Zlokapa, et al (2020). “TensorFlow quantum: A software framework for quantum machine learning”. arXiv:2003.02989 https://doi.org/10.48550/arXiv.2003.02989.BroughtonM.VerdonG.McCourtT.MartinezA. J.YooJ. H.IsakovS. V.MasseyP.HalavatiR.NiuM. Y.ZlokapaA. (2020). “TensorFlow quantum: A software framework for quantum machine learning”. arXiv:2003.02989.https://doi.org/10.48550/arXiv.2003.02989.Search in Google Scholar
C. Xing and M. Broughton (2021). “Training with multiple workers using tensor flow quantum”. https://blog.tensorflow.org.XingC.BroughtonM. (2021). “Training with multiple workers using tensor flow quantum”. https://blog.tensorflow.org.Search in Google Scholar
N. N. Hegade, N. L. Kortikar, B. Das, B. K. Behera, and P. K. Panigrahi (2017). “Experimental demonstration of quantum tunneling in IBM quantum computer”. arXiv:1712.07326 https://doi.org/10.48550/arXiv.1712.07326.HegadeN. N.KortikarN. L.DasB.BeheraB. K.PanigrahiP. K. (2017). “Experimental demonstration of quantum tunneling in IBM quantum computer”. arXiv:1712.07326.https://doi.org/10.48550/arXiv.1712.07326.Search in Google Scholar
H. Norlen (2020). Quantum Computing in Practice with Qiskit and IBM Quantum Experience: Practical Recipes for Quantum Computer Coding at the Gate and Algorithm Level with Python. Packt Publishing Ltd.NorlenH. (2020). Quantum Computing in Practice with Qiskit and IBM Quantum Experience: Practical Recipes for Quantum Computer Coding at the Gate and Algorithm Level with Python.Packt Publishing Ltd.Search in Google Scholar
D. Fortunato, J. Campos, and R. Abreu (2022). “Mutation testing of quantum programs: A case study with qiskit”. IEEE Transactions on Quantum Engineering 3, 1–17. https://doi.org/10.1109/TQE.2022.3195061.FortunatoD.CamposJ.AbreuR. (2022). “Mutation testing of quantum programs: A case study with qiskit”. IEEE Transactions on Quantum Engineering.3.1–17.https://doi.org/10.1109/TQE.2022.3195061.Search in Google Scholar
Pyquil, Rigetti Computing (2017). https://www.rigetti.com/applications/pyquilPyquil, Rigetti Computing (2017). Pyquil, Rigetti Computinghttps://www.rigetti.com/applications/pyquilSearch in Google Scholar
K. Singhal, K. Hietala, S. Marshall, and R. Rand (2022). “Q# as a quantum algorithmic language”. arXiv:2206.03532. https://doi.org/10.4204/EPTCS.394.10.SinghalK.HietalaK.MarshallS.RandR. (2022). “Q# as a quantum algorithmic language”. arXiv:2206.03532.https://doi.org/10.4204/EPTCS.394.10.Search in Google Scholar
The Quipper Language (2013). https://www.mathstat.dal.ca/~selinger/quipper/The Quipper Language (2013). The Quipper Languagehttps://www.mathstat.dal.ca/~selinger/quipper/Search in Google Scholar
J. M. Smith, N. J. Ross, P. Selinger, and B. Valiron (2014). “Quipper: Concrete resource estimation in quantum algorithms”. arXiv:1412.0625. https://doi.org/10.48550/arXiv.1412.0625.SmithJ. M.RossN. J.SelingerP.ValironB. (2014). “Quipper: Concrete resource estimation in quantum algorithms”. arXiv:1412.0625.https://doi.org/10.48550/arXiv.1412.0625.Search in Google Scholar
Dwave Ocean (2018). https://docs.ocean.dwavesys.com/en/stable/Dwave Ocean (2018). Dwave Oceanhttps://docs.ocean.dwavesys.com/en/stable/Search in Google Scholar
D. Willsch, M. Willsch, C. D. Gonzalez Calaza, F. Jin, H. De Raedt, M. Svensson, and K. Michielsen (2022). “Benchmarking advantage and Dwave 2000q quantum annealers with exact cover problems”. Quantum Information Processing 21: 4, 141. https://doi.org/10.1007/s11128-022-03476-y.WillschD.WillschM.Gonzalez CalazaC. D.JinF.De RaedtH.SvenssonM.MichielsenK. (2022). “Benchmarking advantage and Dwave 2000q quantum annealers with exact cover problems”. Quantum Information Processing.21: 4.141.https://doi.org/10.1007/s11128-022-03476-y.Search in Google Scholar
R. Forest (2020). https://qcs.rigetti.com/sdk-downloadsForestR. (2020). sdk-downloadshttps://qcs.rigetti.com/sdk-downloadsSearch in Google Scholar
J. Olivares-Sanchez, J. Casanova, E. Solano, and L. Lamata (2020). “Measurement-based adaptation protocol with quantum reinforcement learning in a Rigetti quantum computer”. Quantum Reports 2: 2, 293–304. https://doi.org/10.3390/quantum2020019.Olivares-SanchezJ.CasanovaJ.SolanoE.LamataL. (2020). “Measurement-based adaptation protocol with quantum reinforcement learning in a Rigetti quantum computer”. Quantum Reports.2: 2.293–304.https://doi.org/10.3390/quantum2020019.Search in Google Scholar
Microsoft Quantum SDK, Microsoft (2022). https://learn.microsoft.com/en-us/azure/quantum/qsharp-overviewMicrosoft Quantum SDK, Microsoft (2022). Microsoft Quantum SDKhttps://learn.microsoft.com/en-us/azure/quantum/qsharp-overviewSearch in Google Scholar
J. Hooyberghs (2022). Introducing Microsoft Quantum Computing for Developers: Using the Quantum Development Kit and Q# Apress, ISBN-10: 1484272455.HooyberghsJ. (2022). Introducing Microsoft Quantum Computing for Developers: Using the Quantum Development Kit and Q#.Apress ISBN-10: 1484272455.Search in Google Scholar
Strawberry Fields, Xanadu (2018). https://strawberryfields.ai/Strawberry Fields, Xanadu (2018). Strawberry Fieldshttps://strawberryfields.ai/Search in Google Scholar
ProjectQ: An open source software framework for quantum computing (2022). https://github.com/ProjectQ-Framework/ProjectQProjectQ: An open source software framework for quantum computing (2022). ProjectQ: An open source software frameworkhttps://github.com/ProjectQ-Framework/ProjectQSearch in Google Scholar
Cirq: An open source framework for programming quantum computers. https://quantumai.google/cirqCirq: An open source framework for programming quantum computers.https://quantumai.google/cirqSearch in Google Scholar
J. R. McClean, N. C. Rubin, K. J. Sung, I. D. Kivlichan, X. Bonet-Monroig, Y. Cao, C. Dai, E. S. Fried, C. Gidney, B. Gimby et al (2020). “Openfermion: the electronic structure package for quantum computers”. Quantum Science and Technology 5: 3, 034014. https://doi.org/10.1088/2058-9565/ab8ebc.McCleanJ. R.RubinN. C.SungK. J.KivlichanI. D.Bonet-MonroigX.CaoY.DaiC.FriedE. S.GidneyC.GimbyB. (2020). “Openfermion: the electronic structure package for quantum computers”. Quantum Science and Technology.5: 3.034014.https://doi.org/10.1088/2058-9565/ab8ebc.Search in Google Scholar
J. R. Johansson, P. D. Nation, and F. Nori (2012). “Qutip: An open-source Python framework for the dynamics of open quantum systems”. Computer Physics Communications 183: 8, 1760–1772. https://doi.org/10.1016/j.cpc.2012.02.021.JohanssonJ. R.NationP. D.NoriF. (2012). “Qutip: An open-source Python framework for the dynamics of open quantum systems”. Computer Physics Communications.183: 8.1760–1772.https://doi.org/10.1016/j.cpc.2012.02.021.Search in Google Scholar
J. Garcia-Alonso, J. Rojo, D. Valencia, E. Moguel, J. Berrocal, and J. M. Murillo (2021). “Quantum software as a service through a quantum API gateway”. IEEE Internet Computing 26: 1, 34–41. https://doi.org/10.1109/MIC.2021.3132688.Garcia-AlonsoJ.RojoJ.ValenciaD.MoguelE.BerrocalJ.MurilloJ. M. (2021). “Quantum software as a service through a quantum API gateway”. IEEE Internet Computing.26: 1.34–41.https://doi.org/10.1109/MIC.2021.3132688.Search in Google Scholar
T. L. Patti, J. Kossaifi, S. F. Yelin, and A. Anandkumar (2021). “Tensorly-quantum: Quantum machine learning with tensor methods”. arXiv:2112.10239. https://doi.org/10.48550/arXiv.2112.10239.PattiT. L.KossaifiJ.YelinS. F.AnandkumarA. (2021). “Tensorly-quantum: Quantum machine learning with tensor methods”. arXiv:2112.10239.https://doi.org/10.48550/arXiv.2112.10239.Search in Google Scholar
C. F. Negre, H. Ushijima-Mwesigwa, and S. M. Mniszewski (2020). “Detecting multiple communities using quantum annealing on the D-wave system”. Plos One 15: 2, e0227538. https://doi.org/10.1371/journal.pone.0227538.NegreC. F.Ushijima-MwesigwaH.MniszewskiS. M. (2020). “Detecting multiple communities using quantum annealing on the D-wave system”. Plos One.15: 2.e0227538.https://doi.org/10.1371/journal.pone.0227538.Search in Google Scholar
J. Romero-Alvarez, J. Alvarado-Valiente, E. Moguel et al (2023). “Leveraging API specifications for scaffolding quantum applications”, in International Workshop on Quantum Software Engineering and Technology(QCE23) IEEE Quantum Week 2023. https://doi.org/10.1109/QCE57702.2023.10208.Romero-AlvarezJ.Alvarado-ValienteJ.MoguelE. (2023). “Leveraging API specifications for scaffolding quantum applications”, in International Workshop on Quantum Software Engineering and Technology(QCE23). IEEE Quantum Week 2023.https://doi.org/10.1109/QCE57702.2023.10208.Search in Google Scholar
I. Kumara, W.-J. Van Den Heuvel, D. A. Tamburri (2021). “Qsoc: Quantum service-oriented computing”, in Symposium and Summer School on Service-Oriented Computing Springer, pp. 52–63. https://doi.org/10.1007/978-3-030-87568-8 3.KumaraI.Van Den HeuvelW.-J.TamburriD. A. (2021). “Qsoc: Quantum service-oriented computing”, in Symposium and Summer School on Service-Oriented Computing.Springer pp. 52–63.https://doi.org/10.1007/978-3-030-87568-8 3.Search in Google Scholar
J. Alvarado-Valiente, J. Romero-Alvarez, E. Moguel, J. Garcia-Alonso, J. M. Murillo (2023). “Technological diversity of quantum computing providers: a comparative study and a proposal for API Gateway integration”. Software Quality Journal 32, 5373. https://doi.org/10.1007/s11219-023-09633-5.Alvarado-ValienteJ.Romero-AlvarezJ.MoguelE.Garcia-AlonsoJ.MurilloJ. M. (2023). “Technological diversity of quantum computing providers: a comparative study and a proposal for API Gateway integration”. Software Quality Journal.32.5373.https://doi.org/10.1007/s11219-023-09633-5.Search in Google Scholar
S. Schwichtenberg, C. Gerth, G. Engels (2017). “From Open API to semantic specifications and code adapters” in 2017 IEEE International Conference on Web Services (ICWS) pp. 484-491. https://doi.org/10.1109/ICWS.2017.56.SchwichtenbergS.GerthC.EngelsG. (2017). “From Open API to semantic specifications and code adapters” in 2017 IEEE International Conference on Web Services (ICWS) pp. 484-491.https://doi.org/10.1109/ICWS.2017.56.Search in Google Scholar
J. Romero-Alvarez, J. Alvarado-Valiente, J. Casco-Seco et al. (2023). ”Developing high-level abstractions for creating quantum services: Open API and Async API”, in Symposium and Summer School On Service-Oriented Computing (SummerSOC 2023) Crete, Greece. https://doi.org/10.1007/978-3-031-64136-7 8.Romero-AlvarezJ.Alvarado-ValienteJ.Casco-SecoJ. (2023). “Developing high-level abstractions for creating quantum services: Open API and Async API”, in Symposium and Summer School On Service-Oriented Computing (SummerSOC 2023).Crete, Greece.https://doi.org/10.1007/978-3-031-64136-7 8.Search in Google Scholar
B. Heim (2021). “Universal quantum intermediate representation”. APS March Meeting Abstracts 2021, 34-009.HeimB. (2021). “Universal quantum intermediate representation”. APS March Meeting Abstracts.2021.34-009.Search in Google Scholar
Y. Ohkura, T. Satoh, R. Van Meter (2022). “Simultaneous execution of quantum circuits on current and near-future NISQ systems”. IEEE Transactions on Quantum Engineering 3. https://doi.org/10.1109/TQE.2022.3164716.OhkuraY.SatohT.Van MeterR. (2022). “Simultaneous execution of quantum circuits on current and near-future NISQ systems”. IEEE Transactions on Quantum Engineering.3.https://doi.org/10.1109/TQE.2022.3164716.Search in Google Scholar
M. Kaliyanandi, J. Murugan, S. K. Subburaj et al (2023). “Design and development of novel security approach designed for cloud computing with load balancing”, in Advances in Intelligent Applications and Innovative Approach 2760, 050005. https://doi.org/10.1063/5.0126814.KaliyanandiM.MuruganJ.SubburajS. K. (2023). “Design and development of novel security approach designed for cloud computing with load balancing”, in Advances in Intelligent Applications and Innovative Approach.2760.050005.https://doi.org/10.1063/5.0126814.Search in Google Scholar
E. Karacan, A. Karakaya, S. Akleylek (2022). “ Quantum secure communication between service provider and SIM”. IEEE Access 10, 69135-69146. https://doi.org/10.1109/ACCESS.2022.3186306.KaracanE.KarakayaA.AkleylekS. (2022). “ Quantum secure communication between service provider and SIM”. IEEE Access.10.69135-69146.https://doi.org/10.1109/ACCESS.2022.3186306.Search in Google Scholar
M. Salm, J. Barzen, F. Leymann, B. Weder (2022). “Prioritization of compiled quantum circuits for different quantum computers”, in 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) pp. 1258-1265. https://doi.org/10.1109/SANER53432.2022.00150.SalmM.BarzenJ.LeymannF.WederB. (2022). “Prioritization of compiled quantum circuits for different quantum computers”, in 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) pp. 1258-1265.https://doi.org/10.1109/SANER53432.2022.00150.Search in Google Scholar
J. Alvarado-Valiente, J. Romero-Alvarez, D. Arias et al (2023). ”Improving the quality of quantum services generation process: Controlling errors and noise”, in Hybrid Artificial Intelligent Systems Springer, Salamanca, Spain, pp. 180–191. https://doi.org/10.1007/978-3-031-40725-3 16.Alvarado-ValienteJ.Romero-AlvarezJ.AriasD. (2023). “Improving the quality of quantum services generation process: Controlling errors and noise”, in Hybrid Artificial Intelligent Systems.Springer.Salamanca, Spain pp. 180–191.https://doi.org/10.1007/978-3-031-40725-3 16.Search in Google Scholar
J. Alvarado-Valiente, J. Romero-Alvarez, A. Diaz et al (2023). ”Quantum services generation and deployment process: A quality-oriented approach”, in Quality of Information and Communications Technology Springer, Aveiro, Portugal, pp. 200–214. https://doi.org/10.1007/978-3-031-43703-8 15.Alvarado-ValienteJ.Romero-AlvarezJ.DiazA. (2023). “Quantum services generation and deployment process: A quality-oriented approach”, in Quality of Information and Communications Technology.Springer.Aveiro, Portugal pp. 200–214.https://doi.org/10.1007/978-3-031-43703-8 15.Search in Google Scholar
V. Silva (2018). Practical Quantum Computing for Developers Programming Quantum Rigs in the Cloud Using Python, Quantum Assembly Language and IBM QExperience. Apress, USA.SilvaV. (2018). Practical Quantum Computing for Developers, Programming Quantum Rigs in the Cloud Using Python, Quantum Assembly Language and IBM QExperience.Apress.USA.Search in Google Scholar
B. Weder, J. Barzen, F. Leymann et al (2021). “Qprov: A provenance system for quantum computing”. IET Quantum Communication, 2: 4, 171–181. https://doi.org/10.1049/qtc2.12012.WederB.BarzenJ.LeymannF. (2021). “Qprov: A provenance system for quantum computing”. IET Quantum Communication.2: 4.171–181.https://doi.org/10.1049/qtc2.12012.Search in Google Scholar
B. Weder, J. Barzen, J. F. Leymann, M. Zimmermann (2021). “Hybrid quantum applications need two orchestrations in superposition: A software architecture perspective”, in 2021 IEEE International Conference on Web Services (ICWS) pp. 1–13. https://doi.org/10.1109/ICWS53863.2021.00015.WederB.BarzenJ.LeymannJ. F.ZimmermannM. (2021). “Hybrid quantum applications need two orchestrations in superposition: A software architecture perspective”, in 2021 IEEE International Conference on Web Services (ICWS) pp. 1–13.https://doi.org/10.1109/ICWS53863.2021.00015.Search in Google Scholar
S. Imre, L. Gyongyosi (2013). Advanced Quantum Communications: An Engineering Approach. Wiley-IEEE Press, 488 pp. ISBN: 978-1-118-00236-0.ImreS.GyongyosiL. (2013). Advanced Quantum Communications: An Engineering Approach.Wiley-IEEE Press.488 pp. ISBN: 978-1-118-00236-0.Search in Google Scholar
W. Cai, X. Mu, W. Wang et al. (2024). “Protecting entanglement between logical qubits via quantum error correction”. Nature Physics, 20, 1022–1026. https://doi.org/10.1038/s41567-024-02446-8.CaiW.MuX.WangW. (2024). “Protecting entanglement between logical qubits via quantum error correction”. Nature Physics.20.1022–1026.https://doi.org/10.1038/s41567-024-02446-8.Search in Google Scholar
N. Benchasattabuse, M. Hajdusek and R. Van Meter (2024). “Engineering challenges in all-photonic quantum repeaters”. IEEE Network https://doi.org/10.1109/MNET.2024.3411802.BenchasattabuseN.HajdusekM.Van MeterR. (2024). “Engineering challenges in all-photonic quantum repeaters”. IEEE Network.https://doi.org/10.1109/MNET.2024.3411802.Search in Google Scholar
A. K. Nayak, E. Chitambar, L. R. Varshney (2024). “Reliable quantum memories with unreliable components”. Physical Review A, 110, 032423. https://doi.org/10.1103/PhysRevA.110.032423.NayakA. K.ChitambarE.VarshneyL. R. (2024). “Reliable quantum memories with unreliable components”. Physical Review A.110.032423.https://doi.org/10.1103/PhysRevA.110.032423.Search in Google Scholar
W. Dur, H.J. Briegel (2007). “Entanglement purification and quantum error correction”. Reports on Progress in Physics 70: 8, 1381–1424. DOI: 10.1088/0034-4885/70/8/R03.DurW.BriegelH.J. (2007). “Entanglement purification and quantum error correction”. Reports on Progress in Physics.70: 8.1381–1424.10.1088/0034-4885/70/8/R03.Open DOISearch in Google Scholar
C. Wang, A. Rahman, R. Li, M. Aelmans, K. Chakraborty (2024). “Application Scenarios for the Quantum Internet”. RFC 9583 Internet-Draft https://datatracker.ietf.org/doc/rfc9583/.WangC.RahmanA.LiR.AelmansM.ChakrabortyK. (2024). “Application Scenarios for the Quantum Internet”. RFC 9583 Internet-Draft.https://datatracker.ietf.org/doc/rfc9583/.Search in Google Scholar
D. J. Reilly (2019). “Challenges in scaling-up the control interface of a quantum computer”. Proc. IEEE Int. Electron Devices Meeting (IEDM) pp. 31.7.1–31.7.6. https://doi.org/10.1109/IEDM19573.2019.8993497.ReillyD. J. (2019). “Challenges in scaling-up the control interface of a quantum computer”. Proc. IEEE Int. Electron Devices Meeting (IEDM) pp. 31.7.1–31.7.6.https://doi.org/10.1109/IEDM19573.2019.8993497.Search in Google Scholar
A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland (2012). “Surface codes: Towards practical large-scale quantum computation”. Physical Review A 86, 32324. https://doi.org/10.1103/PhysRevA.86.032324.FowlerA. G.MariantoniM.MartinisJ. M.ClelandA. N. (2012). “Surface codes: Towards practical large-scale quantum computation”. Physical Review A.86.32324.https://doi.org/10.1103/PhysRevA.86.032324.Search in Google Scholar
T. S. Metodi, D. D. Thaker, A. W. Cross et al. “A quantum logic array microarchitecture: scalable quantum data movement and computation” in Proc. 38th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO) p. 12. https://doi.org/10.1109/MICRO.2005.9MetodiT. S.ThakerD. D.CrossA. W. “A quantum logic array microarchitecture: scalable quantum data movement and computation” in Proc. 38th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO) p. 12.https://doi.org/10.1109/MICRO.2005.9Search in Google Scholar
D. Aharonov, M. Ben-Or (1999). “Fault-tolerant quantum computation with constant error rate”. arXiv:quant-ph/9906129 https://doi.org/10.48550/arXiv.quant-ph/9906129.AharonovD.Ben-OrM. (1999). “Fault-tolerant quantum computation with constant error rate”. arXiv:quant-ph/9906129.https://doi.org/10.48550/arXiv.quant-ph/9906129.Search in Google Scholar
Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien (2023). “Quantum error mitigation”. Reviews of Modern Physics 95, 045005. https://link.aps.org/doi/10.1103/RevModPhys.95.045005.CaiZ.BabbushR.BenjaminS. C.EndoS.HugginsW. J.LiY.McCleanJ. R.O’BrienT. E. (2023). “Quantum error mitigation”. Reviews of Modern Physics.95.045005.https://link.aps.org/doi/10.1103/RevModPhys.95.045005.Search in Google Scholar
S. M. Attya, S. Q. G. Haddad, H. K. R. Al-Zaidi et al (2024). “Quantum computing impact on traditional computer architecture models”. Radioelectronics. Nanosystems. Information Technologies 16: 5, 691704. http://dx.doi.org/10.17725/j.rensit.2024.16.691.AttyaS. M.HaddadS. Q. G.Al-ZaidiH. K. R. (2024). “Quantum computing impact on traditional computer architecture models”. Radioelectronics. Nanosystems. Information Technologies.16: 5.691704.http://dx.doi.org/10.17725/j.rensit.2024.16.691.Search in Google Scholar
S. Muralidharan, L. Li, J. Kim et al (2016). “Optimal architectures for long distance quantum communication”. Scientific Reports, 6, 20463. https://doi.org/10.1038/srep20463.MuralidharanS.LiL.KimJ. (2016). “Optimal architectures for long distance quantum communication”. Scientific Reports.6.20463.https://doi.org/10.1038/srep20463.Search in Google Scholar
P. Wang, C. Y. Luan, M. Qiao et al. et al (2021). “Single ion qubit with estimated coherence time exceeding one hour”. Nature Communications 12, 233. https://doi.org/10.1038/s41467-020-20330-w.WangP.LuanC. Y.QiaoM. (2021). “Single ion qubit with estimated coherence time exceeding one hour”. Nature Communications.12.233.https://doi.org/10.1038/s41467-020-20330-w.Search in Google Scholar
Y. Wang, M. Um, J. Zhang et al (2017). “Single-qubit quantum memory exceeding ten-minute coherence time”. Nature Photon 11, 646–650. https://doi.org/10.1038/s41566-017-0007-1.WangY.UmM.ZhangJ. (2017). “Single-qubit quantum memory exceeding ten-minute coherence time”. Nature Photon.11.646–650.https://doi.org/10.1038/s41566-017-0007-1.Search in Google Scholar
C.E. Bradley, J. Randall, M.H. Abobeih et al (2019). “A ten-qubit solid-state spin register with quantum memory up to one minute”. Physical Review X 9, 031045. https://doi.org/10.1103/PhysRevX.9.031045.BradleyC.E.RandallJ.AbobeihM.H. (2019). “A ten-qubit solid-state spin register with quantum memory up to one minute”. Physical Review X.9.031045.https://doi.org/10.1103/PhysRevX.9.031045.Search in Google Scholar
M. H. Abobeih, J. Cramer, M. A. Bakker et al (2018). “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment”. Nature Communications 9, 2552. https://doi.org/10.1038/s41467-018-04916-z.AbobeihM. H.CramerJ.BakkerM. A. (2018). “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment”. Nature Communications.9.2552.https://doi.org/10.1038/s41467-018-04916-z.Search in Google Scholar
O. Milul, B. Guttel, U. Goldblatt, S. Hazanov et al (2023). “Superconducting cavity qubit with tens of milliseconds single-photon coherence time”. PRX Quantum 4, 030336. https://doi.org/10.1103/PRXQuantum.4.030336.MilulO.GuttelB.GoldblattU.HazanovS. (2023). “Superconducting cavity qubit with tens of milliseconds single-photon coherence time”. PRX Quantum.4.030336.https://doi.org/10.1103/PRXQuantum.4.030336.Search in Google Scholar