This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A.J. Leggett (1980). “Macroscopic quantum systems and the quantum theory of measurement”. Progress of Theoretical Physics Supplement, 69: 80. https://doi.org/10.1143/PTP.69.80.LeggettA.J.1980“Macroscopic quantum systems and the quantum theory of measurement”Progress of Theoretical Physics Supplement6980https://doi.org/10.1143/PTP.69.80.Search in Google Scholar
L. Mandel and E. Wolf (1995). Optical Coherence and Quantum Optics, Cambridge: Cambridge University Press.MandelL.WolfE.1995Optical Coherence and Quantum OpticsCambridgeCambridge University PressSearch in Google Scholar
M. Hillery (2016). “Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation”. Physical Review A, 93: 012111. https://doi.org/10.1103/PhysRevA.93.012111.HilleryM.2016“Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation”Physical Review A93012111https://doi.org/10.1103/PhysRevA.93.012111.Search in Google Scholar
J.M. Matera, D. Egloff, N. Killoran and M.B. Plenio (2016). “Coherent control of quantum systems as a resource theory”. Quantum Science and Technology 1: 01LT01. https://doi.org/10.1088/2058-9565/1/1/01LT01.MateraJ.M.EgloffD.KilloranN.PlenioM.B.2016“Coherent control of quantum systems as a resource theory”Quantum Science and Technology101LT01https://doi.org/10.1088/2058-9565/1/1/01LT01.Search in Google Scholar
M. Pan and D. Qiu (2019). “Operator coherence dynamics in Grover’s quantum search algorithm”. Physical Review A, 100: 012349. https://doi.org/10.1103/PhysRevA.100.012349PanM.QiuD.2019“Operator coherence dynamics in Grover’s quantum search algorithm”Physical Review A100012349https://doi.org/10.1103/PhysRevA.100.012349Search in Google Scholar
W. Wang, et al. (2019). “Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit”. Physical Review Letters, 123: 220501. https://doi.org/10.1103/PhysRevLett.123.220501.WangW.2019“Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit”Physical Review Letters123220501https://doi.org/10.1103/PhysRevLett.123.220501.Search in Google Scholar
F. Ahnefeld, T. Theurer, D. Egloff, J. M. Matera and M. B. Plenio (2022). “Coherence as a resource for Shor’s algorithm”. Physical Review Letters 129: 120501. https://doi.org/10.1103/PhysRevLett.129.120501.AhnefeldF.TheurerT.EgloffD.MateraJ. M.PlenioM. B.2022“Coherence as a resource for Shor’s algorithm”Physical Review Letters129120501https://doi.org/10.1103/PhysRevLett.129.120501.Search in Google Scholar
M. Karimi, A. Javadi-Abhari, C. Simon and R. Ghobadi (2023). “The power of one clean qubit in supervised machine learning”. Scientific Reports, 13: 19975. https://doi.org/10.1038/s41598-023-46497-y.KarimiM.Javadi-AbhariA.SimonC.GhobadiR.2023“The power of one clean qubit in supervised machine learning”Scientific Reports1319975https://doi.org/10.1038/s41598-023-46497-y.Search in Google Scholar
L. Ye, Z. Wu and S. Fei (2023). “Tsallis relative α entropy of coherence dynamics in Grover’s search algorithm”. Communications in Theoretical Physics. 75: 085101. https://doi.org/10.1088/1572-9494/acdce5.YeL.WuZ.FeiS.2023“Tsallis relative α entropy of coherence dynamics in Grover’s search algorithm”Communications in Theoretical Physics75085101https://doi.org/10.1088/1572-9494/acdce5.Search in Google Scholar
J. Berberich, D. Fink and C. Holm, “Robustness of quantum algorithms against coherent control errors”. arXiv 2023, arXiv:2303.00618.BerberichJ.FinkD.HolmC.“Robustness of quantum algorithms against coherent control errors”arXiv2023arXiv:2303.00618.Search in Google Scholar
L. Escalera-Moreno, “QBithm: Towards the coherent control of robust spin qubits in quantum algorithms”. arXiv 2023, arXiv:2303.12655.Escalera-MorenoL.“QBithm: Towards the coherent control of robust spin qubits in quantum algorithms”arXiv2023arXiv:2303.12655.Search in Google Scholar
V. Giovannetti, S. Lloyd and L. Maccone (2004). “Quantum-enhanced measurements: Beating the standard quantum limit”. Science, 306: 1330. https://doi.org/10.1126/science.1104149.GiovannettiV.LloydS.MacconeL.2004“Quantum-enhanced measurements: Beating the standard quantum limit”Science3061330https://doi.org/10.1126/science.1104149.Search in Google Scholar
V. Giovannetti, S. Lloyd and L. Maccone (2011). “Advances in quantum metrology”. Nature Photonics, 5: 222. https://doi.org/10.1038/nphoton.2011.35.GiovannettiV.LloydS.MacconeL.2011“Advances in quantum metrology”Nature Photonics5222https://doi.org/10.1038/nphoton.2011.35.Search in Google Scholar
R. Demkowicz-Dobrzanski and L. Maccone (2014). “Using entanglement against noise in quantum metrology”. Physical Review Letters, 113: 250801. https://doi.org/10.1103/PhysRevLett.113.250801.Demkowicz-DobrzanskiR.MacconeL.2014“Using entanglement against noise in quantum metrology”Physical Review Letters113250801https://doi.org/10.1103/PhysRevLett.113.250801.Search in Google Scholar
D.P. Pires, I.A. Silva, E.R. deAzevedo, D.O. Soares-Pinto, J.G. Filgueiras (2018). “Coherence orders, decoherence, and quantum metrology”. Physical Review A, 98: 032101. https://doi.org/10.1103/PhysRevA.98.032101.PiresD.P.SilvaI.A.deAzevedoE.R.Soares-PintoD.O.FilgueirasJ.G.2018“Coherence orders, decoherence, and quantum metrology”Physical Review A98032101https://doi.org/10.1103/PhysRevA.98.032101.Search in Google Scholar
W. Cheng, S.C. Hou, Z. Wang and X.X. Yi (2019). “Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup”. Physical Review A, 100: 053825. https://doi.org/10.1103/PhysRevA.100.053825.ChengW.HouS.C.WangZ.YiX.X.2019“Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup”Physical Review A100053825https://doi.org/10.1103/PhysRevA.100.053825.Search in Google Scholar
C. Zhang, T.R. Bromley, Y.F. Huang, H. Cao, W.M. Lv, B.H. Liu, C.F. Li, G.C. Guo, M. Cianciaruso and G. Adesso (2019). “Demonstrating quantum coherence and metrology that is resilient to transversal noise”. Physical Review Letters 123: 180504. https://doi.org/10.1103/PhysRevLett.123.180504.ZhangC.BromleyT.R.HuangY.F.CaoH.LvW.M.LiuB.H.LiC.F.GuoG.C.CianciarusoM.AdessoG.2019“Demonstrating quantum coherence and metrology that is resilient to transversal noise”Physical Review Letters123180504https://doi.org/10.1103/PhysRevLett.123.180504.Search in Google Scholar
A. Castellini, R. LoFranco, L. Lami, A. Winter, G. Adesso and G. Compagno (2019). “Indistinguishability-enabled coherence for quantum metrology”. Physical Review A 100: 012308. https://doi.org/10.1103/PhysRevA.100.012308.CastelliniA.LoFrancoR.LamiL.WinterA.AdessoG.CompagnoG.2019“Indistinguishability-enabled coherence for quantum metrology”Physical Review A100012308https://doi.org/10.1103/PhysRevA.100.012308.Search in Google Scholar
L. Ares and A. Luis (2021). “Signal estimation and coherence”. Optics Letters 46: 5409. https://doi.org/10.1364/OL.439197AresL.LuisA.2021“Signal estimation and coherence”Optics Letters465409https://doi.org/10.1364/OL.439197Search in Google Scholar
R. Lecamwasam, S. Assad, J. Hope, P. Lam, J. Thompson and M. Gu (2024). “Relative entropy of coherence quantifies performance in Bayesian metrology”. arXiv 2024, arXiv:2401.16020.LecamwasamR.AssadS.HopeJ.LamP.ThompsonJ.GuM.2024“Relative entropy of coherence quantifies performance in Bayesian metrology”arXiv2024arXiv:2401.16020.Search in Google Scholar
D. Girolami, T. Tufarelli and G. Adesso (2013). “Characterizing nonclassical correlations via local quantum uncertainty”. Physical Review Letters 110: 240402. https://doi.org/10.1103/PhysRevLett.110.240402.GirolamiD.TufarelliT.AdessoG.2013“Characterizing nonclassical correlations via local quantum uncertainty”Physical Review Letters110240402https://doi.org/10.1103/PhysRevLett.110.240402.Search in Google Scholar
A. Farace, A. De Pasquale, L. Rigovacca and V. Giovannetti (2014). “Discriminating strength: A bona fide measure of non-classical correlations”. New Journal of Physics, 16: 7, 073010 https://doi.org/10.1088/1367-2630/16/7/073010.FaraceA.De PasqualeA.RigovaccaL.GiovannettiV.2014“Discriminating strength: A bona fide measure of non-classical correlations”New Journal of Physics167073010https://doi.org/10.1088/1367-2630/16/7/073010.Search in Google Scholar
A. Streltsov, G. Adesso and M. B. Plenio (2017). “Colloquium: Quantum coherence as a resource”. Reviews of Modern Physics, 89: 041003. https://doi.org/10.1103/RevModPhys.89.041003.StreltsovA.AdessoG.PlenioM. B.2017“Colloquium: Quantum coherence as a resource”Reviews of Modern Physics89041003https://doi.org/10.1103/RevModPhys.89.041003.Search in Google Scholar
R. Takagi, B. Regula, K. Bu, Z.W. Liu and G. Adesso (2019). “Operational advantage of quantum resources in subchannel discrimination”. Physical Review Letters 122: 140402. https://doi.org/10.1103/PhysRevLett.122.140402.TakagiR.RegulaB.BuK.LiuZ.W.AdessoG.2019“Operational advantage of quantum resources in subchannel discrimination”Physical Review Letters122140402https://doi.org/10.1103/PhysRevLett.122.140402.Search in Google Scholar
M. Wilde (2020, June). “Coherent quantum channel discrimination”, in Proceedings of the 2020 IEEE International Symposium on Information Theory, pp. 1921–1926. https://doi.org/10.1109/ISIT44484.2020.9174425.WildeM.2020June“Coherent quantum channel discrimination”inProceedings of the 2020 IEEE International Symposium on Information Theory19211926https://doi.org/10.1109/ISIT44484.2020.9174425.Search in Google Scholar
Z.M. Rossi, J. Yu, I.L. Chuang and S. Sugiura (2022). “Quantum advantage for noisy channel discrimination”. Physical Review A, 105: 032401. https://doi.org/10.1103/PhysRevA.105.032401.RossiZ.M.YuJ.ChuangI.L.SugiuraS.2022“Quantum advantage for noisy channel discrimination”Physical Review A105032401https://doi.org/10.1103/PhysRevA.105.032401.Search in Google Scholar
S. Chen, S. Zhou, A. Seif and L. Jiang (2022). “Quantum advantages for Pauli channel estimation”. Physical Review A, 105: 032435. https://doi.org/10.1103/PhysRevA.105.032435.ChenS.ZhouS.SeifA.JiangL.2022“Quantum advantages for Pauli channel estimation”Physical Review A105032435https://doi.org/10.1103/PhysRevA.105.032435.Search in Google Scholar
J. Ma, B. Yadin, D. Girolami, V. Vedral and M. Gu (2016). “Converting coherence to quantum correlations”. Physical Review Letters, 116: 160407. https://doi.org/10.1103/PhysRevLett.116.160407.MaJ.YadinB.GirolamiD.VedralV.GuM.2016“Converting coherence to quantum correlations”Physical Review Letters116160407https://doi.org/10.1103/PhysRevLett.116.160407.Search in Google Scholar
X. Hu and H. Fan (2016). “Extracting quantum coherence via steering”. Scientific Reports 6: 34380. https://doi.org/10.1038/srep34380.HuX.FanH.2016“Extracting quantum coherence via steering”Scientific Reports634380https://doi.org/10.1038/srep34380.Search in Google Scholar
Hu, X., A. Milne, B. Zhang and H. Fan (2016). “Quantum coherence of steered states.” Scientific Reports, 6: 19365. https://doi.org/10.1038/srep19365.HuX.MilneA.ZhangB.FanH.2016“Quantum coherence of steered states.”Scientific Reports619365https://doi.org/10.1038/srep19365.Search in Google Scholar
D. Mondal, T. Pramanik and A. K. Pati (2017). “Nonlocal advantage of quantum coherence”. Physical Review A, 95: 010301(R). https://doi.org/10.1103/PhysRevA.95.010301.MondalD.PramanikT.PatiA. K.2017“Nonlocal advantage of quantum coherence”Physical Review A95010301(R)https://doi.org/10.1103/PhysRevA.95.010301.Search in Google Scholar
D. Girolami and B. Yadin (2017). “Witnessing multipartite entanglement by detecting asymmetry”. Entropy, 19: 124. https://doi.org/10.3390/e19030124.GirolamiD.YadinB.2017“Witnessing multipartite entanglement by detecting asymmetry”Entropy19124https://doi.org/10.3390/e19030124.Search in Google Scholar
Z. Y. Ding, H. Yang, H. Yuan, D. Wang, J. Yang and L. Ye (2019). “Experimental investigation of the nonlocal advantage of quantum coherence”. Physical Review A, 100: 022308. https://doi.org/10.1103/PhysRevA.100.022308.DingZ. Y.YangH.YuanH.WangD.YangJ.YeL.2019“Experimental investigation of the nonlocal advantage of quantum coherence”Physical Review A100022308https://doi.org/10.1103/PhysRevA.100.022308.Search in Google Scholar
K. Lee, J. Lin, K. Lemr, A. Cernoch, A. Miranowicz, F. Nori, H. Ku and Y. Chen (2023). “Coherence distillation unveils Einstein-Podolsky-Rosen steering”. arXiv 2023, arXiv:2312.01055.LeeK.LinJ.LemrK.CernochA.MiranowiczA.NoriF.KuH.ChenY.2023“Coherence distillation unveils Einstein-Podolsky-Rosen steering”arXiv2023arXiv:2312.01055.Search in Google Scholar
G. Karpat, B. Cakmak and F. F. Fanchini (2014). “Quantum coherence and uncertainty in the anisotropic XY chain”. Physical Review B, 90: 104431. https://doi.org/10.1103/PhysRevB.90.104431.KarpatG.CakmakB.FanchiniF. F.2014“Quantum coherence and uncertainty in the anisotropic XY chain”Physical Review B90104431https://doi.org/10.1103/PhysRevB.90.104431.Search in Google Scholar
B. Cakmak, G. Karpat and F. Fanchini (2015). “Factorization and criticality in the anisotropic XY chain via correlations”. Entropy, 17: 790. https://doi.org/10.3390/e17020790.CakmakB.KarpatG.FanchiniF.2015“Factorization and criticality in the anisotropic XY chain via correlations”Entropy17790https://doi.org/10.3390/e17020790.Search in Google Scholar
A.L. Malvezzi, G. Karpat, B. Cakmak, F.F. Fanchini, T. Debarba and R. O. Vianna (2016). “Quantum correlations and coherence in spin-1 Heisenberg chains”. Physical Review B, 93: 184428. https://doi.org/10.1103/PhysRevB.93.184428.MalvezziA.L.KarpatG.CakmakB.FanchiniF.F.DebarbaT.ViannaR. O.2016“Quantum correlations and coherence in spin-1 Heisenberg chains”Physical Review B93184428https://doi.org/10.1103/PhysRevB.93.184428.Search in Google Scholar
J. J. Chen, J. Cui, Y. R. Zhang and H. Fan (2016). “Coherence susceptibility as a probe of quantum phase transitions”. Physical Review A, 94: 022112. https://doi.org/10.1103/PhysRevA.94.022112.ChenJ. J.CuiJ.ZhangY. R.FanH.2016“Coherence susceptibility as a probe of quantum phase transitions”Physical Review A94022112https://doi.org/10.1103/PhysRevA.94.022112.Search in Google Scholar
Y. Li, H. Lin (2016). “Quantum coherence and quantum phase transitions”. Scientific Reports, 6: 26365. https://doi.org/10.1038/srep26365.LiY.LinH.2016“Quantum coherence and quantum phase transitions”Scientific Reports626365https://doi.org/10.1038/srep26365.Search in Google Scholar
Z. D. Shi, H. Goldman, Z. Dong and T. Senthil (2024). “Excitonic quantum criticality: From bilayer graphene to narrow Chern bands”. arXiv 2024, arXiv:2402.12436.ShiZ. D.GoldmanH.DongZ.SenthilT.2024“Excitonic quantum criticality: From bilayer graphene to narrow Chern bands”arXiv2024arXiv:2402.12436.Search in Google Scholar
T. Baumgratz, M. Cramer and M. B. Plenio (2014). “Quantifying coherence”. Physical Review Letters, 113: 140401. https://doi.org/10.1103/PhysRevLett.113.140401BaumgratzT.CramerM.PlenioM. B.2014“Quantifying coherence”Physical Review Letters113140401https://doi.org/10.1103/PhysRevLett.113.140401Search in Google Scholar
E. Chitambar and G. Gour (2019). “Quantum resource theories”. Reviews of Modern Physics, 91: 025001. https://doi.org/10.1103/RevModPhys.91.025001.ChitambarE.GourG.2019“Quantum resource theories”Reviews of Modern Physics91025001https://doi.org/10.1103/RevModPhys.91.025001.Search in Google Scholar
J. Aberg (2006). “Quantifying superposition”. arXiv 2006, arXiv:quant-ph/0612146.AbergJ.2006“Quantifying superposition”arXiv2006arXiv:quant-ph/0612146.Search in Google Scholar
A. Winter and D. Yang (2016). “Operational resource theory of coherence”. Physical Review Letters, 116: 120404. https://doi.org/10.1103/PhysRevLett.116.120404.WinterA.YangD.2016“Operational resource theory of coherence”Physical Review Letters116120404https://doi.org/10.1103/PhysRevLett.116.120404.Search in Google Scholar
B. Yadin, J. Ma, D. Girolami, M. Gu and V. Vedral (2016). “Quantum processes which do not use coherence”. Physical Review X, 6: 041028. https://doi.org/10.1103/PhysRevX.6.041028.YadinB.MaJ.GirolamiD.GuM.VedralV.2016“Quantum processes which do not use coherence”Physical Review X6041028https://doi.org/10.1103/PhysRevX.6.041028.Search in Google Scholar
E. Chitambar and G. Gour (2016) “Comparison of incoherent operations and measures of coherence”. Physical Review A, 94: 052336. https://doi.org/10.1103/PhysRevA.94.052336.ChitambarE.GourG.2016“Comparison of incoherent operations and measures of coherence”Physical Review A94052336https://doi.org/10.1103/PhysRevA.94.052336.Search in Google Scholar
E. Chitambar and G. Gour (2016). “Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence”. Physical Review Letters, 117: 030401. https://doi.org/10.1103/PhysRevLett.117.030401.ChitambarE.GourG.2016“Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence”Physical Review Letters117030401https://doi.org/10.1103/PhysRevLett.117.030401.Search in Google Scholar
I. Marvian and R. W. Spekkens (2016). “How to quantify coherence: Distinguishing speakable and unspeakable notions”. Physical Review A, 94: 052324. https://doi.org/10.1103/PhysRevA.94.052324.MarvianI.SpekkensR. W.2016“How to quantify coherence: Distinguishing speakable and unspeakable notions”Physical Review A94052324https://doi.org/10.1103/PhysRevA.94.052324.Search in Google Scholar
J. Vicente and A. Streltsov (2017). “Genuine quantum coherence”. Journal of Physics A, 50: 045301. https://doi.org/10.1088/1751-8121/50/4/045301.VicenteJ.StreltsovA.2017“Genuine quantum coherence”Journal of Physics A50045301https://doi.org/10.1088/1751-8121/50/4/045301.Search in Google Scholar
R. Takagi and B. Regula (2019). “General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks”. Physical Review X 9: 031053. https://doi.org/10.1103/PhysRevX.9.031053.TakagiR.RegulaB.2019“General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks”Physical Review X9031053https://doi.org/10.1103/PhysRevX.9.031053.Search in Google Scholar
S. Du, Z. Bai and Y. Guo (2015). “Conditions for coherence transformations under incoherent operations”. Physical Review A, 91: 052120. https://doi.org/10.1103/PhysRevA.91.052120.DuS.BaiZ.GuoY.2015“Conditions for coherence transformations under incoherent operations”Physical Review A91052120https://doi.org/10.1103/PhysRevA.91.052120.Search in Google Scholar
A. Streltsov, S. Rana, P. Boes and J. Eisert (2017). “Structure of the resource theory of quantum coherence”. Physical Review Letters, 119: 140402. https://doi.org/10.1103/PhysRevLett.119.140402.StreltsovA.RanaS.BoesP.EisertJ.2017“Structure of the resource theory of quantum coherence”Physical Review Letters119140402https://doi.org/10.1103/PhysRevLett.119.140402.Search in Google Scholar
Q. Zhao, Y. Liu, X. Yuan, E. Chitambar and X. Ma (2018). “One-shot coherence dilution”. Physical Review Letters, 120: 070403. https://doi.org/10.1103/PhysRevLett.120.070403.ZhaoQ.LiuY.YuanX.ChitambarE.MaX.2018“One-shot coherence dilution”Physical Review Letters120070403https://doi.org/10.1103/PhysRevLett.120.070403.Search in Google Scholar
G. Torun and A. Yildiz (2018). “Deterministic transformations of coherent states under incoherent operations”. Physical Review A, 97: 052331. https://doi.org/10.1103/PhysRevA.97.052331TorunG.YildizA.2018“Deterministic transformations of coherent states under incoherent operations”Physical Review A97052331https://doi.org/10.1103/PhysRevA.97.052331Search in Google Scholar
G. Torun, L. Lami, G. Adesso and A. Yildiz (2019). “Optimal distillation of quantum coherence with reduced waste of resources”. Physical Review A, 99: 012321. https://doi.org/10.1103/PhysRevA.99.012321TorunG.LamiL.AdessoG.YildizA.2019“Optimal distillation of quantum coherence with reduced waste of resources”Physical Review A99012321https://doi.org/10.1103/PhysRevA.99.012321Search in Google Scholar
L. Lami, B. Regula, G. Adesso (2019). “Generic bound coherence under strictly incoherent operations”. Physical Review Letters, 122: 150402. https://doi.org/10.1103/PhysRevLett.122.150402LamiL.RegulaB.AdessoG.2019“Generic bound coherence under strictly incoherent operations”Physical Review Letters122150402https://doi.org/10.1103/PhysRevLett.122.150402Search in Google Scholar
S. Du, Z. Bai and X. Qi (2019). “Coherence manipulation under incoherent operations”. Physical Review A, 100: 032313. https://doi.org/10.1103/PhysRevA.100.032313DuS.BaiZ.QiX.2019“Coherence manipulation under incoherent operations”Physical Review A100032313https://doi.org/10.1103/PhysRevA.100.032313Search in Google Scholar
C.L. Liu and D.L. Zhou (2019). “Deterministic coherence distillation”. Physical Review Letters, 123: 070402. https://doi.org/10.1103/PhysRevLett.123.070402LiuC.L.ZhouD.L.2019“Deterministic coherence distillation”Physical Review Letters123070402https://doi.org/10.1103/PhysRevLett.123.070402Search in Google Scholar
K. Wu et al. (2020). “Quantum coherence and state conversion: Theory and experiment”. npj Quant. Info., 6: 22. https://doi.org/10.1038/s41534-020-0250-zWuK.2020“Quantum coherence and state conversion: Theory and experiment”npj Quant. Info.622https://doi.org/10.1038/s41534-020-0250-zSearch in Google Scholar
K. Fang and Z. W. Liu (2020). “No-go theorems for quantum resource purification”. Physical Review Letters, 125: 060405. https://doi.org/10.1103/PhysRevLett.125.060405FangK.LiuZ. W.2020“No-go theorems for quantum resource purification”Physical Review Letters125060405https://doi.org/10.1103/PhysRevLett.125.060405Search in Google Scholar
G. Torun, H. Senyasa and A. Yildiz. (2021). “Resource theory of superposition: State transformations”. Physical Review A, 103: 032416. https://doi.org/10.1103/PhysRevA.103.032416TorunG.SenyasaH.YildizA.2021“Resource theory of superposition: State transformations”Physical Review A103032416https://doi.org/10.1103/PhysRevA.103.032416Search in Google Scholar
L. Zhang, T. Gao and F. Yan (2021). “Transformations of multilevel coherent states under coherence-preserving operations”. Science China Physics, Mechanics & Astronomy, 64: 260312. https://doi.org/10.1007/s11433-021-1696-yZhangL.GaoT.YanF.2021“Transformations of multilevel coherent states under coherence-preserving operations”Science China Physics, Mechanics & Astronomy64260312https://doi.org/10.1007/s11433-021-1696-ySearch in Google Scholar
G. Torun, O. Pusuluk and O. Mustecaplioglu. (2023). “A compendious review of majorization-based resource theories: Quantum information and quantum thermodynamics”. Turkish Journal of Physics, 47: 141. https://doi.org/10.55730/1300-0101.2744TorunG.PusulukO.MustecapliogluO.2023“A compendious review of majorization-based resource theories: Quantum information and quantum thermodynamics”Turkish Journal of Physics47141https://doi.org/10.55730/1300-0101.2744Search in Google Scholar
Y. Yao, G. H. Dong, X. Xiao, M. Li and C. P. Sun (2017). “Interpreting quantum coherence through a quantum measurement process”. Physical Review, 96: 052322. https://doi.org/10.1103/PhysRevA.96.052322YaoY.DongG. H.XiaoX.LiM.SunC. P.2017“Interpreting quantum coherence through a quantum measurement process”Physical Review96052322https://doi.org/10.1103/PhysRevA.96.052322Search in Google Scholar
K. Tan, S. Choi and H. Jeong (2019). “Optimizing nontrivial quantum observables using coherence”. New Journal of Physics, 21: 023013. https://doi.org/10.1088/1367-2630/ab0430.TanK.ChoiS.JeongH.2019“Optimizing nontrivial quantum observables using coherence”New Journal of Physics21023013https://doi.org/10.1088/1367-2630/ab0430.Search in Google Scholar
C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston and G. Adesso (2016). “Robustness of coherence: An operational and observable measure of quantum coherence”. Physical Review Letters, 116: 150502. https://doi.org/10.1103/PhysRevLett.116.150502.NapoliC.BromleyT. R.CianciarusoM.PianiM.JohnstonN.AdessoG.2016“Robustness of coherence: An operational and observable measure of quantum coherence”Physical Review Letters116150502https://doi.org/10.1103/PhysRevLett.116.150502.Search in Google Scholar
Y. Yao, D. Li and C. P. Sun (2019). “Quantum coherence fraction”. Physical Review A, 100: 032324. https://doi.org/10.1103/PhysRevA.100.032324YaoY.LiD.SunC. P.2019“Quantum coherence fraction”Physical Review A100032324https://doi.org/10.1103/PhysRevA.100.032324Search in Google Scholar
D. Sauerwein, N. R. Wallach, G. Gour and B. Kraus (2018). “Transformations among pure multipartite entangled states via local operations are almost never possible”. Physical Review X, 8: 031020. https://doi.org/10.1103/PhysRevX.8.031020.SauerweinD.WallachN. R.GourG.KrausB.2018“Transformations among pure multipartite entangled states via local operations are almost never possible”Physical Review X8031020https://doi.org/10.1103/PhysRevX.8.031020.Search in Google Scholar
S. Du and Z. Bai (2022). “Conversion of Gaussian states under incoherent Gaussian operations”. Physical Review A, 105: 022412. https://doi.org/10.1103/PhysRevA.105.022412.DuS.BaiZ.2022“Conversion of Gaussian states under incoherent Gaussian operations”Physical Review A105022412https://doi.org/10.1103/PhysRevA.105.022412.Search in Google Scholar
O. Kruger and R. F. Werner (2005). “Some open problems in quantum information theory”. arXiv 2005, arXiv:quant-ph/0504166.KrugerO.WernerR. F.2005“Some open problems in quantum information theory”arXiv2005arXiv:quant-ph/0504166.Search in Google Scholar
Available at: https://oqp.iqoqi.oeaw.ac.at/ (Accessed on 22 June 2024).Available at: https://oqp.iqoqi.oeaw.ac.at/ (Accessed on 22 June 2024).Search in Google Scholar
J. Vicente (2024). “Maximally entangled mixed states for a fixed spectrum do not always exist”. Physical Review Letters, 133: 050202. https://doi.org/10.1103/PhysRevLett.133.050202.VicenteJ.2024“Maximally entangled mixed states for a fixed spectrum do not always exist”Physical Review Letters133050202https://doi.org/10.1103/PhysRevLett.133.050202.Search in Google Scholar
J. Xu (2024). “Coherence and imaginarity of quantum states”. arXiv 2024, arXiv:2404.06210.XuJ.2024“Coherence and imaginarity of quantum states”arXiv2024arXiv:2404.06210.Search in Google Scholar
H. Zhao and C. Yu (2018). “Coherence measure in terms of the Tsallis relative α entropy”. Scientific Reports, 8: 299. https://doi.org/10.1038/s41598-017-18692-1ZhaoH.YuC.2018“Coherence measure in terms of the Tsallis relative α entropy”Scientific Reports8299https://doi.org/10.1038/s41598-017-18692-1Search in Google Scholar
A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera and G. Adesso (2015). “Measuring quantum coherence with entanglement”. Physical Review Letters, 115: 020403. https://doi.org/10.1103/PhysRevLett.115.020403StreltsovA.SinghU.DharH. S.BeraM. N.AdessoG.2015“Measuring quantum coherence with entanglement”Physical Review Letters115020403https://doi.org/10.1103/PhysRevLett.115.020403Search in Google Scholar
K. Bu, N. Anand and U. Singh (2018). “Asymmetry and coherence weight of quantum states”. Physical Review A, 97: 032342. https://doi.org/10.1103/PhysRevA.97.032342BuK.AnandN.SinghU.2018“Asymmetry and coherence weight of quantum states”Physical Review A97032342https://doi.org/10.1103/PhysRevA.97.032342Search in Google Scholar
S. Du, Z. Bai and X. Qi (2015). “Coherence measures and optimal conversion for coherent states”. Quantum Information & Computation, 15: 1307. https://doi.org/10.26421/QIC15.15-16-3DuS.BaiZ.QiX.2015“Coherence measures and optimal conversion for coherent states”Quantum Information & Computation151307https://doi.org/10.26421/QIC15.15-16-3Search in Google Scholar
C. Datta, R. Ganardi, T. V. Kondra and A. Streltsov (2023). “Is there a finite complete set of monotones in any quantum resource theory?” Physical Review Letters, 130: 240204. https://doi.org/10.1103/PhysRevLett.130.240204DattaC.GanardiR.KondraT. V.StreltsovA.2023“Is there a finite complete set of monotones in any quantum resource theory?”Physical Review Letters130240204https://doi.org/10.1103/PhysRevLett.130.240204Search in Google Scholar
C. Li and H. Woerdeman (1997). “Special classes of positive and completely positive maps”. Linear Algebra and its Applications, 255: 247. https://doi.org/10.1016/S0024-3795(96)00776-8LiC.WoerdemanH.1997“Special classes of positive and completely positive maps”Linear Algebra and its Applications255247https://doi.org/10.1016/S0024-3795(96)00776-8Search in Google Scholar
V. Paulsen (2003). Completely Bounded Maps and Operator Algebras, Cambridge: Cambridge University Press.PaulsenV.2003Completely Bounded Maps and Operator AlgebrasCambridgeCambridge University PressSearch in Google Scholar
J. Watrous (2018). Theory of Quantum Information, Cambridge: Cambridge University Press.WatrousJ.2018Theory of Quantum InformationCambridgeCambridge University PressSearch in Google Scholar
M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston and G. Adesso (2016). “Robustness of asymmetry and coherence of quantum states”. Physical Review A, 93: 042107. https://doi.org/10.1103/PhysRevA.93.042107.PianiM.CianciarusoM.BromleyT. R.NapoliC.JohnstonN.AdessoG.2016“Robustness of asymmetry and coherence of quantum states”Physical Review A93042107https://doi.org/10.1103/PhysRevA.93.042107.Search in Google Scholar
M. Sion (1958). “On general minimax theorems”. Pacific Journal of Mathematics, 8: 171.SionM.1958“On general minimax theorems”Pacific Journal of Mathematics8171Search in Google Scholar
R. A. Horn and C. R. Johnson (1991). Topics in Matrix Analysis, Cambridge: Cambridge University Press.HornR. A.JohnsonC. R.1991Topics in Matrix AnalysisCambridgeCambridge University PressSearch in Google Scholar