Uneingeschränkter Zugang

State Convertibility under Genuinely Incoherent Operations

 und   
17. Okt. 2024

Zitieren
COVER HERUNTERLADEN

A.J. Leggett (1980). “Macroscopic quantum systems and the quantum theory of measurement”. Progress of Theoretical Physics Supplement, 69: 80. https://doi.org/10.1143/PTP.69.80. LeggettA.J. 1980 “Macroscopic quantum systems and the quantum theory of measurement” Progress of Theoretical Physics Supplement 69 80 https://doi.org/10.1143/PTP.69.80. Search in Google Scholar

L. Mandel and E. Wolf (1995). Optical Coherence and Quantum Optics, Cambridge: Cambridge University Press. MandelL. WolfE. 1995 Optical Coherence and Quantum Optics Cambridge Cambridge University Press Search in Google Scholar

M. Hillery (2016). “Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation”. Physical Review A, 93: 012111. https://doi.org/10.1103/PhysRevA.93.012111. HilleryM. 2016 “Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation” Physical Review A 93 012111 https://doi.org/10.1103/PhysRevA.93.012111. Search in Google Scholar

J.M. Matera, D. Egloff, N. Killoran and M.B. Plenio (2016). “Coherent control of quantum systems as a resource theory”. Quantum Science and Technology 1: 01LT01. https://doi.org/10.1088/2058-9565/1/1/01LT01. MateraJ.M. EgloffD. KilloranN. PlenioM.B. 2016 “Coherent control of quantum systems as a resource theory” Quantum Science and Technology 1 01LT01 https://doi.org/10.1088/2058-9565/1/1/01LT01. Search in Google Scholar

M. Pan and D. Qiu (2019). “Operator coherence dynamics in Grover’s quantum search algorithm”. Physical Review A, 100: 012349. https://doi.org/10.1103/PhysRevA.100.012349 PanM. QiuD. 2019 “Operator coherence dynamics in Grover’s quantum search algorithm” Physical Review A 100 012349 https://doi.org/10.1103/PhysRevA.100.012349 Search in Google Scholar

W. Wang, et al. (2019). “Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit”. Physical Review Letters, 123: 220501. https://doi.org/10.1103/PhysRevLett.123.220501. WangW. 2019 “Witnessing quantum resource conversion within deterministic quantum computation using one pure superconducting qubit” Physical Review Letters 123 220501 https://doi.org/10.1103/PhysRevLett.123.220501. Search in Google Scholar

F. Ahnefeld, T. Theurer, D. Egloff, J. M. Matera and M. B. Plenio (2022). “Coherence as a resource for Shor’s algorithm”. Physical Review Letters 129: 120501. https://doi.org/10.1103/PhysRevLett.129.120501. AhnefeldF. TheurerT. EgloffD. MateraJ. M. PlenioM. B. 2022 “Coherence as a resource for Shor’s algorithm” Physical Review Letters 129 120501 https://doi.org/10.1103/PhysRevLett.129.120501. Search in Google Scholar

M. Karimi, A. Javadi-Abhari, C. Simon and R. Ghobadi (2023). “The power of one clean qubit in supervised machine learning”. Scientific Reports, 13: 19975. https://doi.org/10.1038/s41598-023-46497-y. KarimiM. Javadi-AbhariA. SimonC. GhobadiR. 2023 “The power of one clean qubit in supervised machine learning” Scientific Reports 13 19975 https://doi.org/10.1038/s41598-023-46497-y. Search in Google Scholar

L. Ye, Z. Wu and S. Fei (2023). “Tsallis relative α entropy of coherence dynamics in Grover’s search algorithm”. Communications in Theoretical Physics. 75: 085101. https://doi.org/10.1088/1572-9494/acdce5. YeL. WuZ. FeiS. 2023 “Tsallis relative α entropy of coherence dynamics in Grover’s search algorithm” Communications in Theoretical Physics 75 085101 https://doi.org/10.1088/1572-9494/acdce5. Search in Google Scholar

J. Berberich, D. Fink and C. Holm, “Robustness of quantum algorithms against coherent control errors”. arXiv 2023, arXiv:2303.00618. BerberichJ. FinkD. HolmC. “Robustness of quantum algorithms against coherent control errors” arXiv 2023 arXiv:2303.00618. Search in Google Scholar

L. Escalera-Moreno, “QBithm: Towards the coherent control of robust spin qubits in quantum algorithms”. arXiv 2023, arXiv:2303.12655. Escalera-MorenoL. “QBithm: Towards the coherent control of robust spin qubits in quantum algorithms” arXiv 2023 arXiv:2303.12655. Search in Google Scholar

V. Giovannetti, S. Lloyd and L. Maccone (2004). “Quantum-enhanced measurements: Beating the standard quantum limit”. Science, 306: 1330. https://doi.org/10.1126/science.1104149. GiovannettiV. LloydS. MacconeL. 2004 “Quantum-enhanced measurements: Beating the standard quantum limit” Science 306 1330 https://doi.org/10.1126/science.1104149. Search in Google Scholar

V. Giovannetti, S. Lloyd and L. Maccone (2011). “Advances in quantum metrology”. Nature Photonics, 5: 222. https://doi.org/10.1038/nphoton.2011.35. GiovannettiV. LloydS. MacconeL. 2011 “Advances in quantum metrology” Nature Photonics 5 222 https://doi.org/10.1038/nphoton.2011.35. Search in Google Scholar

R. Demkowicz-Dobrzanski and L. Maccone (2014). “Using entanglement against noise in quantum metrology”. Physical Review Letters, 113: 250801. https://doi.org/10.1103/PhysRevLett.113.250801. Demkowicz-DobrzanskiR. MacconeL. 2014 “Using entanglement against noise in quantum metrology” Physical Review Letters 113 250801 https://doi.org/10.1103/PhysRevLett.113.250801. Search in Google Scholar

D.P. Pires, I.A. Silva, E.R. deAzevedo, D.O. Soares-Pinto, J.G. Filgueiras (2018). “Coherence orders, decoherence, and quantum metrology”. Physical Review A, 98: 032101. https://doi.org/10.1103/PhysRevA.98.032101. PiresD.P. SilvaI.A. deAzevedoE.R. Soares-PintoD.O. FilgueirasJ.G. 2018 “Coherence orders, decoherence, and quantum metrology” Physical Review A 98 032101 https://doi.org/10.1103/PhysRevA.98.032101. Search in Google Scholar

W. Cheng, S.C. Hou, Z. Wang and X.X. Yi (2019). “Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup”. Physical Review A, 100: 053825. https://doi.org/10.1103/PhysRevA.100.053825. ChengW. HouS.C. WangZ. YiX.X. 2019 “Quantum metrology enhanced by coherence-induced driving in a cavity-QED setup” Physical Review A 100 053825 https://doi.org/10.1103/PhysRevA.100.053825. Search in Google Scholar

C. Zhang, T.R. Bromley, Y.F. Huang, H. Cao, W.M. Lv, B.H. Liu, C.F. Li, G.C. Guo, M. Cianciaruso and G. Adesso (2019). “Demonstrating quantum coherence and metrology that is resilient to transversal noise”. Physical Review Letters 123: 180504. https://doi.org/10.1103/PhysRevLett.123.180504. ZhangC. BromleyT.R. HuangY.F. CaoH. LvW.M. LiuB.H. LiC.F. GuoG.C. CianciarusoM. AdessoG. 2019 “Demonstrating quantum coherence and metrology that is resilient to transversal noise” Physical Review Letters 123 180504 https://doi.org/10.1103/PhysRevLett.123.180504. Search in Google Scholar

A. Castellini, R. LoFranco, L. Lami, A. Winter, G. Adesso and G. Compagno (2019). “Indistinguishability-enabled coherence for quantum metrology”. Physical Review A 100: 012308. https://doi.org/10.1103/PhysRevA.100.012308. CastelliniA. LoFrancoR. LamiL. WinterA. AdessoG. CompagnoG. 2019 “Indistinguishability-enabled coherence for quantum metrology” Physical Review A 100 012308 https://doi.org/10.1103/PhysRevA.100.012308. Search in Google Scholar

L. Ares and A. Luis (2021). “Signal estimation and coherence”. Optics Letters 46: 5409. https://doi.org/10.1364/OL.439197 AresL. LuisA. 2021 “Signal estimation and coherence” Optics Letters 46 5409 https://doi.org/10.1364/OL.439197 Search in Google Scholar

R. Lecamwasam, S. Assad, J. Hope, P. Lam, J. Thompson and M. Gu (2024). “Relative entropy of coherence quantifies performance in Bayesian metrology”. arXiv 2024, arXiv:2401.16020. LecamwasamR. AssadS. HopeJ. LamP. ThompsonJ. GuM. 2024 “Relative entropy of coherence quantifies performance in Bayesian metrology” arXiv 2024 arXiv:2401.16020. Search in Google Scholar

D. Girolami, T. Tufarelli and G. Adesso (2013). “Characterizing nonclassical correlations via local quantum uncertainty”. Physical Review Letters 110: 240402. https://doi.org/10.1103/PhysRevLett.110.240402. GirolamiD. TufarelliT. AdessoG. 2013 “Characterizing nonclassical correlations via local quantum uncertainty” Physical Review Letters 110 240402 https://doi.org/10.1103/PhysRevLett.110.240402. Search in Google Scholar

A. Farace, A. De Pasquale, L. Rigovacca and V. Giovannetti (2014). “Discriminating strength: A bona fide measure of non-classical correlations”. New Journal of Physics, 16: 7, 073010 https://doi.org/10.1088/1367-2630/16/7/073010. FaraceA. De PasqualeA. RigovaccaL. GiovannettiV. 2014 “Discriminating strength: A bona fide measure of non-classical correlations” New Journal of Physics 16 7 073010 https://doi.org/10.1088/1367-2630/16/7/073010. Search in Google Scholar

A. Streltsov, G. Adesso and M. B. Plenio (2017). “Colloquium: Quantum coherence as a resource”. Reviews of Modern Physics, 89: 041003. https://doi.org/10.1103/RevModPhys.89.041003. StreltsovA. AdessoG. PlenioM. B. 2017 “Colloquium: Quantum coherence as a resource” Reviews of Modern Physics 89 041003 https://doi.org/10.1103/RevModPhys.89.041003. Search in Google Scholar

R. Takagi, B. Regula, K. Bu, Z.W. Liu and G. Adesso (2019). “Operational advantage of quantum resources in subchannel discrimination”. Physical Review Letters 122: 140402. https://doi.org/10.1103/PhysRevLett.122.140402. TakagiR. RegulaB. BuK. LiuZ.W. AdessoG. 2019 “Operational advantage of quantum resources in subchannel discrimination” Physical Review Letters 122 140402 https://doi.org/10.1103/PhysRevLett.122.140402. Search in Google Scholar

M. Wilde (2020, June). “Coherent quantum channel discrimination”, in Proceedings of the 2020 IEEE International Symposium on Information Theory, pp. 1921–1926. https://doi.org/10.1109/ISIT44484.2020.9174425. WildeM. 2020 June “Coherent quantum channel discrimination” in Proceedings of the 2020 IEEE International Symposium on Information Theory 1921 1926 https://doi.org/10.1109/ISIT44484.2020.9174425. Search in Google Scholar

Z.M. Rossi, J. Yu, I.L. Chuang and S. Sugiura (2022). “Quantum advantage for noisy channel discrimination”. Physical Review A, 105: 032401. https://doi.org/10.1103/PhysRevA.105.032401. RossiZ.M. YuJ. ChuangI.L. SugiuraS. 2022 “Quantum advantage for noisy channel discrimination” Physical Review A 105 032401 https://doi.org/10.1103/PhysRevA.105.032401. Search in Google Scholar

S. Chen, S. Zhou, A. Seif and L. Jiang (2022). “Quantum advantages for Pauli channel estimation”. Physical Review A, 105: 032435. https://doi.org/10.1103/PhysRevA.105.032435. ChenS. ZhouS. SeifA. JiangL. 2022 “Quantum advantages for Pauli channel estimation” Physical Review A 105 032435 https://doi.org/10.1103/PhysRevA.105.032435. Search in Google Scholar

J. Ma, B. Yadin, D. Girolami, V. Vedral and M. Gu (2016). “Converting coherence to quantum correlations”. Physical Review Letters, 116: 160407. https://doi.org/10.1103/PhysRevLett.116.160407. MaJ. YadinB. GirolamiD. VedralV. GuM. 2016 “Converting coherence to quantum correlations” Physical Review Letters 116 160407 https://doi.org/10.1103/PhysRevLett.116.160407. Search in Google Scholar

X. Hu and H. Fan (2016). “Extracting quantum coherence via steering”. Scientific Reports 6: 34380. https://doi.org/10.1038/srep34380. HuX. FanH. 2016 “Extracting quantum coherence via steering” Scientific Reports 6 34380 https://doi.org/10.1038/srep34380. Search in Google Scholar

Hu, X., A. Milne, B. Zhang and H. Fan (2016). “Quantum coherence of steered states.” Scientific Reports, 6: 19365. https://doi.org/10.1038/srep19365. HuX. MilneA. ZhangB. FanH. 2016 “Quantum coherence of steered states.” Scientific Reports 6 19365 https://doi.org/10.1038/srep19365. Search in Google Scholar

D. Mondal, T. Pramanik and A. K. Pati (2017). “Nonlocal advantage of quantum coherence”. Physical Review A, 95: 010301(R). https://doi.org/10.1103/PhysRevA.95.010301. MondalD. PramanikT. PatiA. K. 2017 “Nonlocal advantage of quantum coherence” Physical Review A 95 010301(R) https://doi.org/10.1103/PhysRevA.95.010301. Search in Google Scholar

D. Girolami and B. Yadin (2017). “Witnessing multipartite entanglement by detecting asymmetry”. Entropy, 19: 124. https://doi.org/10.3390/e19030124. GirolamiD. YadinB. 2017 “Witnessing multipartite entanglement by detecting asymmetry” Entropy 19 124 https://doi.org/10.3390/e19030124. Search in Google Scholar

Z. Y. Ding, H. Yang, H. Yuan, D. Wang, J. Yang and L. Ye (2019). “Experimental investigation of the nonlocal advantage of quantum coherence”. Physical Review A, 100: 022308. https://doi.org/10.1103/PhysRevA.100.022308. DingZ. Y. YangH. YuanH. WangD. YangJ. YeL. 2019 “Experimental investigation of the nonlocal advantage of quantum coherence” Physical Review A 100 022308 https://doi.org/10.1103/PhysRevA.100.022308. Search in Google Scholar

K. Lee, J. Lin, K. Lemr, A. Cernoch, A. Miranowicz, F. Nori, H. Ku and Y. Chen (2023). “Coherence distillation unveils Einstein-Podolsky-Rosen steering”. arXiv 2023, arXiv:2312.01055. LeeK. LinJ. LemrK. CernochA. MiranowiczA. NoriF. KuH. ChenY. 2023 “Coherence distillation unveils Einstein-Podolsky-Rosen steering” arXiv 2023 arXiv:2312.01055. Search in Google Scholar

G. Karpat, B. Cakmak and F. F. Fanchini (2014). “Quantum coherence and uncertainty in the anisotropic XY chain”. Physical Review B, 90: 104431. https://doi.org/10.1103/PhysRevB.90.104431. KarpatG. CakmakB. FanchiniF. F. 2014 “Quantum coherence and uncertainty in the anisotropic XY chain” Physical Review B 90 104431 https://doi.org/10.1103/PhysRevB.90.104431. Search in Google Scholar

B. Cakmak, G. Karpat and F. Fanchini (2015). “Factorization and criticality in the anisotropic XY chain via correlations”. Entropy, 17: 790. https://doi.org/10.3390/e17020790. CakmakB. KarpatG. FanchiniF. 2015 “Factorization and criticality in the anisotropic XY chain via correlations” Entropy 17 790 https://doi.org/10.3390/e17020790. Search in Google Scholar

A.L. Malvezzi, G. Karpat, B. Cakmak, F.F. Fanchini, T. Debarba and R. O. Vianna (2016). “Quantum correlations and coherence in spin-1 Heisenberg chains”. Physical Review B, 93: 184428. https://doi.org/10.1103/PhysRevB.93.184428. MalvezziA.L. KarpatG. CakmakB. FanchiniF.F. DebarbaT. ViannaR. O. 2016 “Quantum correlations and coherence in spin-1 Heisenberg chains” Physical Review B 93 184428 https://doi.org/10.1103/PhysRevB.93.184428. Search in Google Scholar

J. J. Chen, J. Cui, Y. R. Zhang and H. Fan (2016). “Coherence susceptibility as a probe of quantum phase transitions”. Physical Review A, 94: 022112. https://doi.org/10.1103/PhysRevA.94.022112. ChenJ. J. CuiJ. ZhangY. R. FanH. 2016 “Coherence susceptibility as a probe of quantum phase transitions” Physical Review A 94 022112 https://doi.org/10.1103/PhysRevA.94.022112. Search in Google Scholar

Y. Li, H. Lin (2016). “Quantum coherence and quantum phase transitions”. Scientific Reports, 6: 26365. https://doi.org/10.1038/srep26365. LiY. LinH. 2016 “Quantum coherence and quantum phase transitions” Scientific Reports 6 26365 https://doi.org/10.1038/srep26365. Search in Google Scholar

Z. D. Shi, H. Goldman, Z. Dong and T. Senthil (2024). “Excitonic quantum criticality: From bilayer graphene to narrow Chern bands”. arXiv 2024, arXiv:2402.12436. ShiZ. D. GoldmanH. DongZ. SenthilT. 2024 “Excitonic quantum criticality: From bilayer graphene to narrow Chern bands” arXiv 2024 arXiv:2402.12436. Search in Google Scholar

T. Baumgratz, M. Cramer and M. B. Plenio (2014). “Quantifying coherence”. Physical Review Letters, 113: 140401. https://doi.org/10.1103/PhysRevLett.113.140401 BaumgratzT. CramerM. PlenioM. B. 2014 “Quantifying coherence” Physical Review Letters 113 140401 https://doi.org/10.1103/PhysRevLett.113.140401 Search in Google Scholar

E. Chitambar and G. Gour (2019). “Quantum resource theories”. Reviews of Modern Physics, 91: 025001. https://doi.org/10.1103/RevModPhys.91.025001. ChitambarE. GourG. 2019 “Quantum resource theories” Reviews of Modern Physics 91 025001 https://doi.org/10.1103/RevModPhys.91.025001. Search in Google Scholar

J. Aberg (2006). “Quantifying superposition”. arXiv 2006, arXiv:quant-ph/0612146. AbergJ. 2006 “Quantifying superposition” arXiv 2006 arXiv:quant-ph/0612146. Search in Google Scholar

A. Winter and D. Yang (2016). “Operational resource theory of coherence”. Physical Review Letters, 116: 120404. https://doi.org/10.1103/PhysRevLett.116.120404. WinterA. YangD. 2016 “Operational resource theory of coherence” Physical Review Letters 116 120404 https://doi.org/10.1103/PhysRevLett.116.120404. Search in Google Scholar

B. Yadin, J. Ma, D. Girolami, M. Gu and V. Vedral (2016). “Quantum processes which do not use coherence”. Physical Review X, 6: 041028. https://doi.org/10.1103/PhysRevX.6.041028. YadinB. MaJ. GirolamiD. GuM. VedralV. 2016 “Quantum processes which do not use coherence” Physical Review X 6 041028 https://doi.org/10.1103/PhysRevX.6.041028. Search in Google Scholar

E. Chitambar and G. Gour (2016) “Comparison of incoherent operations and measures of coherence”. Physical Review A, 94: 052336. https://doi.org/10.1103/PhysRevA.94.052336. ChitambarE. GourG. 2016 “Comparison of incoherent operations and measures of coherence” Physical Review A 94 052336 https://doi.org/10.1103/PhysRevA.94.052336. Search in Google Scholar

E. Chitambar and G. Gour (2016). “Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence”. Physical Review Letters, 117: 030401. https://doi.org/10.1103/PhysRevLett.117.030401. ChitambarE. GourG. 2016 “Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence” Physical Review Letters 117 030401 https://doi.org/10.1103/PhysRevLett.117.030401. Search in Google Scholar

I. Marvian and R. W. Spekkens (2016). “How to quantify coherence: Distinguishing speakable and unspeakable notions”. Physical Review A, 94: 052324. https://doi.org/10.1103/PhysRevA.94.052324. MarvianI. SpekkensR. W. 2016 “How to quantify coherence: Distinguishing speakable and unspeakable notions” Physical Review A 94 052324 https://doi.org/10.1103/PhysRevA.94.052324. Search in Google Scholar

J. Vicente and A. Streltsov (2017). “Genuine quantum coherence”. Journal of Physics A, 50: 045301. https://doi.org/10.1088/1751-8121/50/4/045301. VicenteJ. StreltsovA. 2017 “Genuine quantum coherence” Journal of Physics A 50 045301 https://doi.org/10.1088/1751-8121/50/4/045301. Search in Google Scholar

R. Takagi and B. Regula (2019). “General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks”. Physical Review X 9: 031053. https://doi.org/10.1103/PhysRevX.9.031053. TakagiR. RegulaB. 2019 “General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks” Physical Review X 9 031053 https://doi.org/10.1103/PhysRevX.9.031053. Search in Google Scholar

S. Du, Z. Bai and Y. Guo (2015). “Conditions for coherence transformations under incoherent operations”. Physical Review A, 91: 052120. https://doi.org/10.1103/PhysRevA.91.052120. DuS. BaiZ. GuoY. 2015 “Conditions for coherence transformations under incoherent operations” Physical Review A 91 052120 https://doi.org/10.1103/PhysRevA.91.052120. Search in Google Scholar

A. Streltsov, S. Rana, P. Boes and J. Eisert (2017). “Structure of the resource theory of quantum coherence”. Physical Review Letters, 119: 140402. https://doi.org/10.1103/PhysRevLett.119.140402. StreltsovA. RanaS. BoesP. EisertJ. 2017 “Structure of the resource theory of quantum coherence” Physical Review Letters 119 140402 https://doi.org/10.1103/PhysRevLett.119.140402. Search in Google Scholar

Q. Zhao, Y. Liu, X. Yuan, E. Chitambar and X. Ma (2018). “One-shot coherence dilution”. Physical Review Letters, 120: 070403. https://doi.org/10.1103/PhysRevLett.120.070403. ZhaoQ. LiuY. YuanX. ChitambarE. MaX. 2018 “One-shot coherence dilution” Physical Review Letters 120 070403 https://doi.org/10.1103/PhysRevLett.120.070403. Search in Google Scholar

G. Torun and A. Yildiz (2018). “Deterministic transformations of coherent states under incoherent operations”. Physical Review A, 97: 052331. https://doi.org/10.1103/PhysRevA.97.052331 TorunG. YildizA. 2018 “Deterministic transformations of coherent states under incoherent operations” Physical Review A 97 052331 https://doi.org/10.1103/PhysRevA.97.052331 Search in Google Scholar

G. Torun, L. Lami, G. Adesso and A. Yildiz (2019). “Optimal distillation of quantum coherence with reduced waste of resources”. Physical Review A, 99: 012321. https://doi.org/10.1103/PhysRevA.99.012321 TorunG. LamiL. AdessoG. YildizA. 2019 “Optimal distillation of quantum coherence with reduced waste of resources” Physical Review A 99 012321 https://doi.org/10.1103/PhysRevA.99.012321 Search in Google Scholar

L. Lami, B. Regula, G. Adesso (2019). “Generic bound coherence under strictly incoherent operations”. Physical Review Letters, 122: 150402. https://doi.org/10.1103/PhysRevLett.122.150402 LamiL. RegulaB. AdessoG. 2019 “Generic bound coherence under strictly incoherent operations” Physical Review Letters 122 150402 https://doi.org/10.1103/PhysRevLett.122.150402 Search in Google Scholar

S. Du, Z. Bai and X. Qi (2019). “Coherence manipulation under incoherent operations”. Physical Review A, 100: 032313. https://doi.org/10.1103/PhysRevA.100.032313 DuS. BaiZ. QiX. 2019 “Coherence manipulation under incoherent operations” Physical Review A 100 032313 https://doi.org/10.1103/PhysRevA.100.032313 Search in Google Scholar

C.L. Liu and D.L. Zhou (2019). “Deterministic coherence distillation”. Physical Review Letters, 123: 070402. https://doi.org/10.1103/PhysRevLett.123.070402 LiuC.L. ZhouD.L. 2019 “Deterministic coherence distillation” Physical Review Letters 123 070402 https://doi.org/10.1103/PhysRevLett.123.070402 Search in Google Scholar

K. Wu et al. (2020). “Quantum coherence and state conversion: Theory and experiment”. npj Quant. Info., 6: 22. https://doi.org/10.1038/s41534-020-0250-z WuK. 2020 “Quantum coherence and state conversion: Theory and experiment” npj Quant. Info. 6 22 https://doi.org/10.1038/s41534-020-0250-z Search in Google Scholar

K. Fang and Z. W. Liu (2020). “No-go theorems for quantum resource purification”. Physical Review Letters, 125: 060405. https://doi.org/10.1103/PhysRevLett.125.060405 FangK. LiuZ. W. 2020 “No-go theorems for quantum resource purification” Physical Review Letters 125 060405 https://doi.org/10.1103/PhysRevLett.125.060405 Search in Google Scholar

G. Torun, H. Senyasa and A. Yildiz. (2021). “Resource theory of superposition: State transformations”. Physical Review A, 103: 032416. https://doi.org/10.1103/PhysRevA.103.032416 TorunG. SenyasaH. YildizA. 2021 “Resource theory of superposition: State transformations” Physical Review A 103 032416 https://doi.org/10.1103/PhysRevA.103.032416 Search in Google Scholar

L. Zhang, T. Gao and F. Yan (2021). “Transformations of multilevel coherent states under coherence-preserving operations”. Science China Physics, Mechanics & Astronomy, 64: 260312. https://doi.org/10.1007/s11433-021-1696-y ZhangL. GaoT. YanF. 2021 “Transformations of multilevel coherent states under coherence-preserving operations” Science China Physics, Mechanics & Astronomy 64 260312 https://doi.org/10.1007/s11433-021-1696-y Search in Google Scholar

G. Torun, O. Pusuluk and O. Mustecaplioglu. (2023). “A compendious review of majorization-based resource theories: Quantum information and quantum thermodynamics”. Turkish Journal of Physics, 47: 141. https://doi.org/10.55730/1300-0101.2744 TorunG. PusulukO. MustecapliogluO. 2023 “A compendious review of majorization-based resource theories: Quantum information and quantum thermodynamics” Turkish Journal of Physics 47 141 https://doi.org/10.55730/1300-0101.2744 Search in Google Scholar

Y. Yao, G. H. Dong, X. Xiao, M. Li and C. P. Sun (2017). “Interpreting quantum coherence through a quantum measurement process”. Physical Review, 96: 052322. https://doi.org/10.1103/PhysRevA.96.052322 YaoY. DongG. H. XiaoX. LiM. SunC. P. 2017 “Interpreting quantum coherence through a quantum measurement process” Physical Review 96 052322 https://doi.org/10.1103/PhysRevA.96.052322 Search in Google Scholar

K. Tan, S. Choi and H. Jeong (2019). “Optimizing nontrivial quantum observables using coherence”. New Journal of Physics, 21: 023013. https://doi.org/10.1088/1367-2630/ab0430. TanK. ChoiS. JeongH. 2019 “Optimizing nontrivial quantum observables using coherence” New Journal of Physics 21 023013 https://doi.org/10.1088/1367-2630/ab0430. Search in Google Scholar

C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston and G. Adesso (2016). “Robustness of coherence: An operational and observable measure of quantum coherence”. Physical Review Letters, 116: 150502. https://doi.org/10.1103/PhysRevLett.116.150502. NapoliC. BromleyT. R. CianciarusoM. PianiM. JohnstonN. AdessoG. 2016 “Robustness of coherence: An operational and observable measure of quantum coherence” Physical Review Letters 116 150502 https://doi.org/10.1103/PhysRevLett.116.150502. Search in Google Scholar

Y. Yao, D. Li and C. P. Sun (2019). “Quantum coherence fraction”. Physical Review A, 100: 032324. https://doi.org/10.1103/PhysRevA.100.032324 YaoY. LiD. SunC. P. 2019 “Quantum coherence fraction” Physical Review A 100 032324 https://doi.org/10.1103/PhysRevA.100.032324 Search in Google Scholar

D. Sauerwein, N. R. Wallach, G. Gour and B. Kraus (2018). “Transformations among pure multipartite entangled states via local operations are almost never possible”. Physical Review X, 8: 031020. https://doi.org/10.1103/PhysRevX.8.031020. SauerweinD. WallachN. R. GourG. KrausB. 2018 “Transformations among pure multipartite entangled states via local operations are almost never possible” Physical Review X 8 031020 https://doi.org/10.1103/PhysRevX.8.031020. Search in Google Scholar

S. Du and Z. Bai (2022). “Conversion of Gaussian states under incoherent Gaussian operations”. Physical Review A, 105: 022412. https://doi.org/10.1103/PhysRevA.105.022412. DuS. BaiZ. 2022 “Conversion of Gaussian states under incoherent Gaussian operations” Physical Review A 105 022412 https://doi.org/10.1103/PhysRevA.105.022412. Search in Google Scholar

O. Kruger and R. F. Werner (2005). “Some open problems in quantum information theory”. arXiv 2005, arXiv:quant-ph/0504166. KrugerO. WernerR. F. 2005 “Some open problems in quantum information theory” arXiv 2005 arXiv:quant-ph/0504166. Search in Google Scholar

Available at: https://oqp.iqoqi.oeaw.ac.at/ (Accessed on 22 June 2024). Available at: https://oqp.iqoqi.oeaw.ac.at/ (Accessed on 22 June 2024). Search in Google Scholar

J. Vicente (2024). “Maximally entangled mixed states for a fixed spectrum do not always exist”. Physical Review Letters, 133: 050202. https://doi.org/10.1103/PhysRevLett.133.050202. VicenteJ. 2024 “Maximally entangled mixed states for a fixed spectrum do not always exist” Physical Review Letters 133 050202 https://doi.org/10.1103/PhysRevLett.133.050202. Search in Google Scholar

J. Xu (2024). “Coherence and imaginarity of quantum states”. arXiv 2024, arXiv:2404.06210. XuJ. 2024 “Coherence and imaginarity of quantum states” arXiv 2024 arXiv:2404.06210. Search in Google Scholar

H. Zhao and C. Yu (2018). “Coherence measure in terms of the Tsallis relative α entropy”. Scientific Reports, 8: 299. https://doi.org/10.1038/s41598-017-18692-1 ZhaoH. YuC. 2018 “Coherence measure in terms of the Tsallis relative α entropy” Scientific Reports 8 299 https://doi.org/10.1038/s41598-017-18692-1 Search in Google Scholar

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera and G. Adesso (2015). “Measuring quantum coherence with entanglement”. Physical Review Letters, 115: 020403. https://doi.org/10.1103/PhysRevLett.115.020403 StreltsovA. SinghU. DharH. S. BeraM. N. AdessoG. 2015 “Measuring quantum coherence with entanglement” Physical Review Letters 115 020403 https://doi.org/10.1103/PhysRevLett.115.020403 Search in Google Scholar

K. Bu, N. Anand and U. Singh (2018). “Asymmetry and coherence weight of quantum states”. Physical Review A, 97: 032342. https://doi.org/10.1103/PhysRevA.97.032342 BuK. AnandN. SinghU. 2018 “Asymmetry and coherence weight of quantum states” Physical Review A 97 032342 https://doi.org/10.1103/PhysRevA.97.032342 Search in Google Scholar

S. Du, Z. Bai and X. Qi (2015). “Coherence measures and optimal conversion for coherent states”. Quantum Information & Computation, 15: 1307. https://doi.org/10.26421/QIC15.15-16-3 DuS. BaiZ. QiX. 2015 “Coherence measures and optimal conversion for coherent states” Quantum Information & Computation 15 1307 https://doi.org/10.26421/QIC15.15-16-3 Search in Google Scholar

C. Datta, R. Ganardi, T. V. Kondra and A. Streltsov (2023). “Is there a finite complete set of monotones in any quantum resource theory?” Physical Review Letters, 130: 240204. https://doi.org/10.1103/PhysRevLett.130.240204 DattaC. GanardiR. KondraT. V. StreltsovA. 2023 “Is there a finite complete set of monotones in any quantum resource theory?” Physical Review Letters 130 240204 https://doi.org/10.1103/PhysRevLett.130.240204 Search in Google Scholar

C. Li and H. Woerdeman (1997). “Special classes of positive and completely positive maps”. Linear Algebra and its Applications, 255: 247. https://doi.org/10.1016/S0024-3795(96)00776-8 LiC. WoerdemanH. 1997 “Special classes of positive and completely positive maps” Linear Algebra and its Applications 255 247 https://doi.org/10.1016/S0024-3795(96)00776-8 Search in Google Scholar

V. Paulsen (2003). Completely Bounded Maps and Operator Algebras, Cambridge: Cambridge University Press. PaulsenV. 2003 Completely Bounded Maps and Operator Algebras Cambridge Cambridge University Press Search in Google Scholar

J. Watrous (2018). Theory of Quantum Information, Cambridge: Cambridge University Press. WatrousJ. 2018 Theory of Quantum Information Cambridge Cambridge University Press Search in Google Scholar

M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston and G. Adesso (2016). “Robustness of asymmetry and coherence of quantum states”. Physical Review A, 93: 042107. https://doi.org/10.1103/PhysRevA.93.042107. PianiM. CianciarusoM. BromleyT. R. NapoliC. JohnstonN. AdessoG. 2016 “Robustness of asymmetry and coherence of quantum states” Physical Review A 93 042107 https://doi.org/10.1103/PhysRevA.93.042107. Search in Google Scholar

M. Sion (1958). “On general minimax theorems”. Pacific Journal of Mathematics, 8: 171. SionM. 1958 “On general minimax theorems” Pacific Journal of Mathematics 8 171 Search in Google Scholar

R. A. Horn and C. R. Johnson (1991). Topics in Matrix Analysis, Cambridge: Cambridge University Press. HornR. A. JohnsonC. R. 1991 Topics in Matrix Analysis Cambridge Cambridge University Press Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Quantenphysik