This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A. Ambainis, A. Gilyén, S. Jeffery and M. Kokainis (2020). “Quadratic speedup for finding marked vertices by quantum walks”, in K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath and J. Chuzhoy (eds), Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, Jun 22, 412–424.AmbainisA.GilyénA.JefferyS.KokainisM.2020“Quadratic speedup for finding marked vertices by quantum walks”, inMakarychevK.MakarychevY.TulsianiM.KamathG.ChuzhoyJ.(eds),Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of ComputingJun 22412424Search in Google Scholar
S. Apers, S. Chakraborty, L. Novo and J. Roland (2022). “Quadratic speedup for spatial search by continuous-time quantum walk”. Physical Review Letters, 129: 16, 160502.ApersS.ChakrabortyS.NovoL.RolandJ.2022“Quadratic speedup for spatial search by continuous-time quantum walk”Physical Review Letters12916160502Search in Google Scholar
A. Ambainis (2007). “Quantum walk algorithm for element distinctness”. SIAM Journal on Computing 37: 1, 210–239.AmbainisA.2007“Quantum walk algorithm for element distinctness”SIAM Journal on Computing371210239Search in Google Scholar
J.K. Gamble, M. Friesen, D. Zhou, R. Joynt and S.N. Coppersmith (2010). “Two-particle quantum walks applied to the graph isomorphism problem”. Physical Review A 81: 5, 052313.GambleJ.K.FriesenM.ZhouD.JoyntR.CoppersmithS.N.2010“Two-particle quantum walks applied to the graph isomorphism problem”Physical Review A815052313Search in Google Scholar
D. Aharonov, A. Ambainis, J. Kempe, et al. (2001). “Quantum walks on graphs”, in Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, 50–59.AharonovD.AmbainisA.KempeJ.2001“Quantum walks on graphs”inProceedings of the Thirty-third Annual ACM Symposium on Theory of Computing5059Search in Google Scholar
B. Tödtli, M. Laner, J. Semenov, et al. (2016). “Continuous-time quantum walks on directed bipartite graphs”. Physical Review A, 94: 5, 052338.TödtliB.LanerM.SemenovJ.2016“Continuous-time quantum walks on directed bipartite graphs”Physical Review A945052338Search in Google Scholar
R. Chaves, B. Chagas, and G. Coutinho (2023). “Why and how to add direction to a quantum walk”. Quantum Information Processing, 22: 1, 41.ChavesR.ChagasB.Coutinhoand G.2023“Why and how to add direction to a quantum walk”Quantum Information Processing22141Search in Google Scholar
A.M. Childs (2009). “Universal computation by quantum walk”. Physical Review Letters, 102: 18, 180501.ChildsA.M.2009“Universal computation by quantum walk”Physical Review Letters10218180501Search in Google Scholar
A.M. Childs, D. Gosset and Z. Webb (2013). “Universal computation by multiparticle quantum walk”. Science, 339: 6121, 791–794.ChildsA.M.GossetD.WebbZ.2013“Universal computation by multiparticle quantum walk”Science3396121791794Search in Google Scholar
M. Tamura, T. Mukaiyama and K. Toyoda (2020). “Quantum walks of a phonon in trapped ions”. Physical Review Letters, 124: 20, 200501.TamuraM.MukaiyamaT.ToyodaK.2020“Quantum walks of a phonon in trapped ions”Physical Review Letters12420200501Search in Google Scholar
J. Wang and K. Manouchehri (2013). Physical Implementation of Quantum Walks. Heidelberg: Springer Berlin, 10: 978–983.WangJ.ManouchehriK.2013Physical Implementation of Quantum WalksHeidelbergSpringer Berlin10978983Search in Google Scholar
C. A. Ryan, M. Laforest, J.C. Boileau and R. Laflamme (2005). “Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor”. Physical Review A, 72: 6, 062317.RyanC. A.LaforestM.BoileauJ.C.LaflammeR.2005“Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor”Physical Review A726062317Search in Google Scholar
L. K. Grover (1996). “A fast quantum mechanical algorithm for database search”, in: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996 Jul 1, pp. 212–219.GroverL. K.1996“A fast quantum mechanical algorithm for database search”in:Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing1996 Jul 1212219Search in Google Scholar
G.L. Long (2001). “Grover algorithm with zero theoretical failure rate”. Physical Review A, 64: 2, 022307.LongG.L.2001“Grover algorithm with zero theoretical failure rate”Physical Review A642022307Search in Google Scholar
G. Li and L. Li, “Deterministic quantum search with adjustable parameters: Implementations and applications”. Information and Computation, 292, 105042.LiG.LiL.“Deterministic quantum search with adjustable parameters: Implementations and applications”Information and Computation292105042Search in Google Scholar
A. Ambainis, J. Kempe and A. Rivosh (2005). “Coins make quantum walks faster”, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, USA, 1099–1108.AmbainisA.KempeJ.RivoshA.2005“Coins make quantum walks faster”inProceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete AlgorithmsSociety for Industrial and Applied MathematicsUSA10991108Search in Google Scholar
T.G. Wong (2015). “Grover search with lackadaisical quantum walks”. Journal of Physics A: Mathematical and Theoretical, 48: 43, 435304.WongT.G.2015“Grover search with lackadaisical quantum walks”Journal of Physics A: Mathematical and Theoretical4843435304Search in Google Scholar
G.A. Bezerra, P.H.G. Lugão and R. Portugal (2021). “Quantum-walk-based search algorithms with multiple marked vertices”. Physical Review A, 103: 6, 062202.BezerraG.A.LugãoP.H.G.PortugalR.2021“Quantum-walk-based search algorithms with multiple marked vertices”Physical Review A1036062202Search in Google Scholar
M. Roget, H. Kadri and G. Di Molfetta (2023). “Optimality conditions for spatial search with multiple marked vertices”. Physical Review Research, 5: 3, 033021.RogetM.KadriH.Di MolfettaG.2023“Optimality conditions for spatial search with multiple marked vertices”Physical Review Research53033021Search in Google Scholar
S. Chakraborty, L. Novo and J. Roland (2020). “Optimality of spatial search via continuous-time quantum walks”. Physical Review A, 102: 3, 032214.ChakrabortyS.NovoL.RolandJ.2020“Optimality of spatial search via continuous-time quantum walks”Physical Review A1023032214Search in Google Scholar
S. Marsh and J.B. Wang (2021). “Deterministic spatial search using alternating quantum walks,” Physical Review A 104: 2, 022216.MarshS.WangJ.B.2021“Deterministic spatial search using alternating quantum walks,”Physical Review A1042022216Search in Google Scholar
D. Qu, S. Marsh, K. Wang, L. Xiao, J. Wang and P. Xue (2022). “Deterministic search on star graphs via quantum walks”. Physical Review Letters, 128: 5, 050501.QuD.MarshS.WangK.XiaoL.WangJ.XueP.2022“Deterministic search on star graphs via quantum walks”Physical Review Letters1285050501Search in Google Scholar
Q. Wang, Y. Jiang, S. Feng, et al. (2023). “Universal approach to deterministic spatial search via alternating quantum walks”. arxiv preprint arxiv:2307.16133.WangQ.JiangY.FengS.2023“Universal approach to deterministic spatial search via alternating quantum walks”arxiv preprint arxiv:2307.16133.Search in Google Scholar
F. Peng, M. Li and X. Sun (2024). “Deterministic discrete-time quantum walk search on complete bipartite graphs”. Physical Review Research, 6: 3, 033042.PengF.LiM.SunX.2024“Deterministic discrete-time quantum walk search on complete bipartite graphs”Physical Review Research63033042Search in Google Scholar
Z. Gong, S. Liu, Y. Wen, et al. (2016). “Biclique cryptanalysis using balanced complete bipartite subgraphs”. Science China. Information Sciences, 59: 4, 049101.GongZ.LiuS.WenY.2016“Biclique cryptanalysis using balanced complete bipartite subgraphs”Science China. Information Sciences594049101Search in Google Scholar
M. Štefaòák and S. Skoupı (2017). “Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs”. Quantum Information Processing, 16, 1–14.ŠtefaòákM.SkoupıS.2017“Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs”Quantum Information Processing16114Search in Google Scholar
R.A.M. Santos (2022). “Quantum state transfer on the complete bipartite graph”. Journal of Physics A: Mathematical and Theoretical 55: 12, 125301.SantosR.A.M.2022“Quantum state transfer on the complete bipartite graph”Journal of Physics A: Mathematical and Theoretical5512125301Search in Google Scholar
T.G. Wong, L. Tarrataca and N. Nahimov (2016). “Laplacian versus adjacency matrix in quantum walk search”. Quantum Information Processing, 5, 4029–4048.WongT.G.TarratacaL.NahimovN.2016“Laplacian versus adjacency matrix in quantum walk search”Quantum Information Processing540294048Search in Google Scholar
M.L. Rhodes and T.G. Wong (2019). “Quantum walk search on the complete bipartite graph”. Physical Review A, 99: 3, 032301.RhodesM.L.WongT.G.2019“Quantum walk search on the complete bipartite graph”Physical Review A993032301Search in Google Scholar
R. Beals, H. Buhrman, R. Cleve, et al. (2001). “Quantum lower bounds by polynomials”. Journal of the ACM (JACM), 48: 4, 778–797.BealsR.BuhrmanH.CleveR.2001“Quantum lower bounds by polynomials”Journal of the ACM (JACM)484778797Search in Google Scholar
Y. Xu, D. Zhang and L. Li (2022). “Robust quantum walk search without knowing the number of marked vertices”. Physical Review A 106: 5, 052207.XuY.ZhangD.LiL.2022“Robust quantum walk search without knowing the number of marked vertices”Physical Review A1065052207Search in Google Scholar
M.A. Nielsen and I.L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press.NielsenM.A.ChuangI.L.2010Quantum Computation and Quantum InformationCambridge University PressSearch in Google Scholar
G.A. Bezerra, R.A. Santos and R. Portugal (2023). “Quantum counting on the complete bipartite graph”. arxiv preprint arXiv:2311.10407[quant-ph].BezerraG.A.SantosR.A.PortugalR.2023“Quantum counting on the complete bipartite graph”arxiv preprint arXiv:2311.10407[quant-ph].Search in Google Scholar
G. Brassard, P. Hoyer, M. Mosca, and A. Tapp (2002). “Quantum amplitude amplification and estimation”. Contemporary Mathematics, 305, 53–74.BrassardG.HoyerP.MoscaM.TappA.2002“Quantum amplitude amplification and estimation”Contemporary Mathematics3055374Search in Google Scholar
T. Loke and J.B. Wang (2017). “Efficient quantum circuits for continuous-time quantum walks on composite graphs”. Journal of Physics A: Mathematical and Theoretical, 50: 5, 055303.LokeT.WangJ.B.2017“Efficient quantum circuits for continuous-time quantum walks on composite graphs”Journal of Physics A: Mathematical and Theoretical505055303Search in Google Scholar
D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma (2014). “Exponential improvement in precision for simulating sparse Hamiltonians”, in: Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 283–292.BerryD.W.ChildsA.M.CleveR.KothariR.SommaR.D.2014“Exponential improvement in precision for simulating sparse Hamiltonians”in:Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing283292Search in Google Scholar
https://qiskit.qotlabs.org/api/qiskit/0.45/qiskit.primitives.Samplerhttps://qiskit.qotlabs.org/api/qiskit/0.45/qiskit.primitives.SamplerSearch in Google Scholar
https://qiskit.github.io/qiskit-aer/https://qiskit.github.io/qiskit-aer/Search in Google Scholar
https://github.com/ScarletLynn1998/Paper-Code-for-Deterministic-Search-on-Complete-Bipartite-Graphs-by-Continuous-Time-Quantum-Walkhttps://github.com/ScarletLynn1998/Paper-Code-for-Deterministic-Search-on-Complete-Bipartite-Graphs-by-Continuous-Time-Quantum-WalkSearch in Google Scholar
W. Chu-Ryang (2019). Simpler quantum counting. Quantum Information & Computation, 19, 967–983Chu-RyangW.2019Simpler quantum countingQuantum Information & Computation19967983Search in Google Scholar
S. Aaronson and P. Rall (2020). “Quantum approximate counting, simplified”, in Symposium on Simplicity in Algorithms. Society for Industrial and Applied Mathematics, 24–32.AaronsonS.RallP.2020“Quantum approximate counting, simplified”inSymposium on Simplicity in AlgorithmsSociety for Industrial and Applied Mathematics,2432Search in Google Scholar
Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera and N. Yamamoto (2020). “Amplitude estimation without phase estimation”. Quantum Information Processing, 19, 1–7.SuzukiY.UnoS.RaymondR.TanakaT.OnoderaT.YamamotoN.2020“Amplitude estimation without phase estimation”Quantum Information Processing1917Search in Google Scholar
D. Grinko, J. Gacon, C. Zoufal and S. Woerner. (2021). “Iterative quantum amplitude estimation”. NPJ Quantum Information, 7: 1, 52.GrinkoD.GaconJ.ZoufalC.WoernerS.2021“Iterative quantum amplitude estimation”NPJ Quantum Information7152Search in Google Scholar