[Domarch, C., Cherchi, E. (2023). Electric vehicle forecasts: a review of models and methods including diffusion and substitution effects. Transport Rev., 43 (6), 1118–1143. https://doi.org/10.1080/01441647.2023.2195687.]Search in Google Scholar
[Dong, Y., Meng, J., Sun, X., Zhao, P., Sun, P., Zheng, B. (2023). Experimental study on effects of triggering modes on thermal runaway characteristics of lithium-ion battery. World Electr. Veh. J., 14 (10), 270. https://doi.org/10.3390/wevj14100270.]Search in Google Scholar
[EV fires — current data (2023). https://www.evfiresafe.com/ev-battery-fire-data.]Search in Google Scholar
[Golubkov, W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C., Fauler, G., Voitic, G., Thaler, A., Hacker, V. (2014). Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv., 4, 3633. https://doi.org/10.1039/C3RA45748F.]Search in Google Scholar
[Hoelle, S., Scharner, S., Asanin, S., Hinrichsen, O. (2021). Analysis on thermal runaway behavior of prismatic lithium-ion batteries with autoclave calorimetry. J. Electrochem. Soc., 168, 120515. https://doi.org/10.1149/1945-7111/ac3c27.]Search in Google Scholar
[Kozma, J., Benkara, K. E. K., Dib, R., Forgez, C., Moubayed, N. (2023). Aging determination of lithium ion batteries based on thermal measurements. IEEE Vehicle Power and Propulsion Conference, Milan, Italy 24–27 October. Milan, p. 6. https://doi.org/10.1109/VPPC60535.2023.10403235.]Search in Google Scholar
[Lazarenko, O., Berezhanskyi, T., Pospolitak, V., Pazen, O. (2022). Experimental evaluation of the influence of excessive electric current on the fire hazard of lithium-ion power cell. Eastern-Eur. J. Enterprise Technol., 4 (10), 67–75. https://doi.org/10.15587/1729-4061.2022.263001]Search in Google Scholar
[Lazarenko, O., Berezhanskyi, T., Pospolitak, V., Pazen, O. (2023). Assessing the effect of mechanical deformation of the Panasonic NCR18650B lithium-ion power cell housing on its fire safety. Eastern-Eur. J. Enterprise Technol., 2 (7), 69–78. https://doi.org/10.15587/1729-4061.2023.276780.]Search in Google Scholar
[Lazarenko, O. V., Pazen, O. Yu., Sukach, R. Yu., Pospolitak, V. I. (2022). Experimental evaluation of fire hazard of lithium-ion battery during its mechanical damage. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, № 5, pp. 68-73. https://doi.org/10.33271/nvngu/2022-5/068.]Search in Google Scholar
[Lee, C., Said, A. O., Stoliarov, S. I. (2020). Passive mitigation of thermal runaway propagation in dense 18650 lithium ion cell assemblies. J. Electrochem. Soc., 167, 090524. https://doi.org/10.1149/1945-7111/ab8978.]Search in Google Scholar
[Li, K., Wu, Y., Wang, J., Wang, S. (2017). Experimental study on thermal characteristics and temperature distribution of laminated lithium-ion power battery. Energy Proc., 142, 3338–3343. https://doi.org/10.1016/j.egypro.2017.12.467.]Search in Google Scholar
[Liang, K., Zhu, Q., Zhou, X. (2023). Simulation and characteristic analysis of high-temperature thermal runaway process in ternary lithium-ion batteries. Research Gate, 17. https://doi.org/10.21203/rs.3.rs-3459779/v1.]Search in Google Scholar
[Liu, Y., Niu, H., Li, Z., Liu, J., Xu, C., Huang, X. (2021). Thermal runaway characteristics and failure criticality of massive ternary Li-ion battery piles in low-pressure storage and transport. Proc. Safety Environ. Protect., 155, 486–497. https://doi.org/10.1016/j.psep.2021.09.031.]Search in Google Scholar
[Parkhomenko, V.-P., Lazarenko, O., Sukach, R. (2023). Analysis of equipment for extinguishing electric vehicles and development of recommendations for their extinguishing. Fire Safety, 42, 74–84. https://doi.org/https://doi.org/10.32447/20786662.42.2023.09.]Search in Google Scholar
[Ruiza, V., Pfranga, A., Kristona, A., Omarb, N., Bosscheb, P. van den, Boon-Bretta, L. (2018). A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sust. Energy Rev., 81, 1427–1452. https://doi.org/10.1016/j.rser.2017.05.195.]Search in Google Scholar
[Sun, P., Bisschop, R., Niu, H., Huang, X. (2020). A review of battery fires in electric vehicles. Fire Technol., 56, 1361–1410. https://doi.org/10.1007/s10694-019-00944-3.]Search in Google Scholar
[Tan, Y., Li, Y., Gu, Y., Liu, W., Fang, J., Pan, C. (2024). Numerical study on heat generation characteristics of charge and discharge cycle of the lithium-ion. Battery Energies, 17 (1), 178. https://doi.org/10.3390/en17010178.]Search in Google Scholar
[Tatsii, R. M., Pazen, O. Y. (2018). Direct (classical) method of calculation of the temperature field in a hollow multilayer cylinder. J. Eng. Phys. Thermoph., 91, 1373–1384. https://doi.org/10.1007/s10891-018-1871-3.]Search in Google Scholar
[Tatsii, R. M., Pazen, O. Y., Shypot, L. S. (2020). Research of the temperature field in the system of multilayer cylindrical solid bodies under fire conditions. Fire Safety, 37, 64–71. https://doi.org/10.32447/20786662.37.2020.10.]Search in Google Scholar
[Weber, N., Schuhmann, S., Tübke, J., Nirschl, H. (2023). Chemical thermal runaway modeling of lithium-ion batteries for prediction of heat and gas generation. Energy Technol., 11 (10), 2300565, 12. https://doi.org/10.1002/ente.202300565.]Search in Google Scholar
[Xie, J., Xie, N., Liu, Y. (2018). Analysis of the thermal characteristics and thermal management of lithium-ion power battery. Adv. Eng. Res., 162, 427–433. https://doi.org/10.2991/icammce-18.2018.94.]Search in Google Scholar
[Yu, Y., Zhang, J., Zhu, M., Zhao, L., Chen, Y., Chen, M. (2023). Experimental investigation on the thermal management for lithium-ion batteries based on the novel flame retardant composite phase change materials. Batteries, 9, 378. https://doi.org/10.3390/batteries9070378.]Search in Google Scholar
[Zhang, M., Xu, H., Ma, N., Pan, X. (2022). Intelligent vehicle sales prediction based on online public opinion and online search index. Sustainability, 14 (16), 10344. https://doi.org/10.3390/su141610344.]Search in Google Scholar