Uneingeschränkter Zugang

Impact of Long-Fermented Sourdough on the Technological and Prebiotical Properties of Rye Bread


Zitieren

Arendt, E. K., Moroni, A. V. (2013). Sourdough and gluten-free products. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 245–264.10.1007/978-1-4614-5425-0_10 Search in Google Scholar

Badel, S., Bernardi, T., Michaud, P. (2011). New perspectives for lactobacilli exopolysaccharides. Biotechnol. Adv., 29 (1), 54–66.10.1016/j.biotechadv.2010.08.01120807563 Search in Google Scholar

Baruah, R., Maina, N. H., Katina, K., Juvonen, R., Goyal, A. (2017). Functional food applications of dextran from weissella cibaria RBA12 from pummelo (Citrus maxima). Int. J. Food Microbiol., 242, 124–131.10.1016/j.ijfoodmicro.2016.11.01227992769 Search in Google Scholar

Bessmeltseva, M., Viiard, E., Simm, J., Paalme, T., Sarand, I. (2014). Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation. PLoS ONE, 9 (4), 10–11.10.1371/journal.pone.0095449399167724748058 Search in Google Scholar

Boreczek, J., Litwinek, D., Izak, D., Buksa, K., Gawor, J., Gromadka, R., Karol, J., Kowalczyk, M. (2020). Bacterial community dynamics in spontaneous sourdoughs made from wheat, spelt, and rye wholemeal flour. Microbiol. Open, 9 (4), 1–13.10.1002/mbo3.1009714237132045510 Search in Google Scholar

Chavan, R. S., Chavan, S. R. (2011). Sourdough technology — a traditional way for wholesome foods: A review. Comprehens. Rev. Food Sci. Food Safety, 10 (3), 169–182.10.1111/j.1541-4337.2011.00148.x Search in Google Scholar

Corsetti, A. (2013). Technology and biodiversity of sourdough yeasts and lactic acid bacteria. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 85–104. Search in Google Scholar

De Vuyst, L., Van Kerrebroeck, S., Leroy, F. (2017). Microbial ecology and process technology of sourdough fermentation. Adv. Appl. Microbiol., 100, 49–160.10.1016/bs.aambs.2017.02.00328732554 Search in Google Scholar

Debonne, E., Maene, P., Vermeulen, A., Van Bockstaele, F., Depredomme, L., Vermeir, P., Eechout, M., Devlieghere, F. (2020). Validation of in-vitro antifungal activity of the fermentation quotient on bread spoilage moulds through growth/no-growth modelling and bread baking trials. Lwt – Food Sci. Technol., 117, 108636.10.1016/j.lwt.2019.108636 Search in Google Scholar

Donot, F., Fontana, A., Baccou, J. C., Schorr-Galindo, S. (2012). Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87 (2), 951–962.10.1016/j.carbpol.2011.08.083 Search in Google Scholar

Farias, D. de P., de Araújo, F. F., Neri-Numa, I. A., Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol., 93, 23–35.10.1016/j.tifs.2019.09.004 Search in Google Scholar

Gobbetti, M., Gänzle, M. (2013a). Physiology and biochemistry of lactic acid bacteria. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 279–285.10.1007/978-1-4614-5425-0_12 Search in Google Scholar

Gobbetti, M., Gänzle, M. (2013b). Perspectives. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 279–285.10.1007/978-1-4614-5425-0_12 Search in Google Scholar

Gänzle, M. G., Zheng, J. (2019). Lifestyles of sourdough lactobacilli – do they matter for microbial ecology and bread quality? Int. J. Food Microbiol., 302, 15–23.10.1016/j.ijfoodmicro.2018.08.01930172443 Search in Google Scholar

Hermann, M., Petermeier, H., Vogel, R. F. (2015). Development of novel sourdoughs with in situ formed exopolysaccharides from acetic acid bacteria. Eur. Food Res. Technol., 241 (2), 185–197.10.1007/s00217-015-2444-8 Search in Google Scholar

Huys, G., Daniel, H. M., Vuyst, L. D (2013). Taxonomy and biodiversity of sourdough yeasts and lactic acid bacteria. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 105–154.10.1007/978-1-4614-5425-0_5 Search in Google Scholar

Ispirli, H., Demirbaş, F., Yüzer, M. O., Dertli, E. (2018). Identification of lactic acid bacteria from spontaneous rye sourdough and determination of their functional characteristics. Food Biotechnol., 32 (3), 222–235.10.1080/08905436.2018.1507913 Search in Google Scholar

Kaditzky, S., Vogel, R. F. (2008). Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur. Food Res. Technol., 228 (2), 291–299.10.1007/s00217-008-0934-7 Search in Google Scholar

Kajala, I., Mäkelä, J., Coda, R., Shukla, S., Shi, Q., Maina, N. H., Juvonen, M., Ekholm, P., Goyal, A., Tenkanen, M., Katina, K. (2016). Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl. Microbiol. Biotechnol., 100 (8), 3499–3510.10.1007/s00253-015-7189-626649737 Search in Google Scholar

Koistinen, V. M., Mattila, O., Katina, K., Poutanen, K., Aura, A. M., Hanhineva, K. (2018). Metabolic profiling of sourdough fermented wheat and rye bread. Sci. Rep., 8 (1), 1–11.10.1038/s41598-018-24149-w589028929632321 Search in Google Scholar

Korakli, M., Gänzle, M. G., Vogel, R. F. (2002). Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol., 92 (5), 958–965.10.1046/j.1365-2672.2002.01607.x11972702 Search in Google Scholar

Kozlinskis, E. (2011). Development of microbial populations in spontaneous rye bread sourdoughs. Summary of Doctoral thesis. Latvia University of Agriculture, Jelgava, Latvia. 66 pp. https://llufb.llu.lv/dissertation-summary/food-microbiology/Emils-Kozlinskis_promocijas_darba_kopsavilkums_2011_LLU_PTF.pdf (accessed 10 October 2020). Search in Google Scholar

Lacaze, G., Wick, M., Cappelle, S. (2007). Emerging fermentation technologies: Development of novel sourdoughs. Food Microbiol., 24 (2), 155–160.10.1016/j.fm.2006.07.01517008159 Search in Google Scholar

Lynch, K. M., Coffey, A., Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Res. Int., 110, 52–61.10.1016/j.foodres.2017.03.01230029706 Search in Google Scholar

Oleksy-Sobczak, M., Klewicka, E., Piekarska-Radzik, L. (2020). Exopolysaccharides production by Lactobacillus rhamnosus strains: Optimization of synthesis and extraction conditions. LWT – Food Sci. Technol., 122, 109055.10.1016/j.lwt.2020.109055 Search in Google Scholar

Păcularu-Burada, B., Georgescu, L. A., Bahrim, G. E. (2020). Current approaches in sourdough production with valuable characteristics for technological and functional applications. Ann. Univ. Dunarea de Jos of Galati, Fascicle VI Food Technol., 44 (1), 132–148.10.35219/foodtechnology.2020.1.08 Search in Google Scholar

Poutanen, K., Flander, L., Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol., 26 (7), 693–699.10.1016/j.fm.2009.07.01119747602 Search in Google Scholar

Quattrini, M., Liang, N., Fortina, M. G., Xiang, S., Curtis, J. M., Gänzle, M. (2019). Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol., 302, 8–14.10.1016/j.ijfoodmicro.2018.09.00730220438 Search in Google Scholar

Rühmkorf, C., Jungkunz, S., Wagner, M., Vogel, R. F. (2012). Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiol., 32 (2), 286–294.10.1016/j.fm.2012.07.00222986191 Search in Google Scholar

Sanalibaba, P., Cakmak, G. A. (2016). Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol., 2 (2), 1000115.10.4172/2471-9315.1000115 Search in Google Scholar

Savkina, O., Kuznetsova, L., Burykina, M., Kostyuchenko, M., Parakhina, O. (2020). The influence of the flour amylolytic enzymes activity, dosage of ingredients and bread making method on the sugar content and the bread quality. Agron. Res., 18 (Special Issue 3), 1873–1887. Search in Google Scholar

Siepmann, F. B., Sousa de Almeida, B., Waszczynskyj, N., Spier, M. R. (2019). Influence of temperature and of starter culture on biochemical characteristics and the aromatic compounds evolution on type II sourdough and wheat bread. LWT – Food Sci. Technol., 108, 199–206.10.1016/j.lwt.2019.03.065 Search in Google Scholar

Sun, L., Li, X., Zhang, Y., Yang, W., Ma, G., Ma, N., Hu, Q., Pei, F. (2020). A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control, 109, 106914.10.1016/j.foodcont.2019.106914 Search in Google Scholar

Therdthai, N. (2014). Fermentation. In: Zhou, W. (Ed.). Bakery Products Science and Technology. Second Edition. John Wiley & Sons, pp. 326–334.10.1002/9781118792001.ch18 Search in Google Scholar

Tieking, M., Gänzle, M. G. (2005). Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci. Technol., 16 (1–3), 79–84.10.1016/j.tifs.2004.02.015 Search in Google Scholar

Torrieri, E., Pepe, O., Ventorino, V., Masi, P., Cavella, S. (2014). Effect of sourdough at different concentrations on quality and shelf life of bread. LWT – Food Sci. Technol., 56 (2), 508–516.10.1016/j.lwt.2013.12.005 Search in Google Scholar

Tsafrakidou, P., Michaelidou, A. M., Biliaderis, C. G. (2020). Fermented cereal-based products: Nutritional aspects, possible impact on gut microbiota and health implications. Foods, 9 (6), 734.10.3390/foods9060734735353432503142 Search in Google Scholar

Tsuda, H., Okuda, S., Haraguchi, T., Kodama, K. (2019). Influence of exopolysaccharide on the growth of lactic acid bacteria. Italian J. Food Sci., 31 (2), 233–242. Search in Google Scholar

Viiard, E., Bessmeltseva, M., Simm, J., Talve, T., Aaspõllu, A., Paalme, T., Sarand, I. (2016). Diversity and stability of lactic acid bacteria in rye sourdoughs of four bakeries with different propagation parameters. PLoS ONE, 11 (2), 5–6.10.1371/journal.pone.0148325474396026849134 Search in Google Scholar

Waldherr, F., Vogel, R. F. (2009). Commercial exploitation of homo-exopolysaccharides in non-dairy food. In: Ullrich, M. (Ed.). Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press, Poole, pp. 313–329. Search in Google Scholar

Wang, Y., Trani, A., Knaapila, A., Hietala, S., Coda, R., Katina, K., Maina, N. H. (2020). The effect of in situ produced dextran on flavour and texture perception of wholegrain sorghum bread. Food Hydrocolloids, 106, 105913.10.1016/j.foodhyd.2020.105913 Search in Google Scholar

Weckx, S., Van der Meulen, R., Maes, D., Scheirlinck, I., Huys, G., Vandamme, P., De Vuyst, L. (2010). Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol., 27 (8), 1000–1008.10.1016/j.fm.2010.06.00520832677 Search in Google Scholar

Xu, Y., Cui, Y., Yue, F., Liu, L., Shan, Y., Liu, B., Zhou, Y., Lü, X. (2019). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids, 94, 475–499.10.1016/j.foodhyd.2019.03.032 Search in Google Scholar

eISSN:
2255-890X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Allgemein, Mathematik, Allgemeines