Zitieren

Anonymous (2020). Co3O4 Crystal Structure – SpringerMaterials. Available at: https://materials.springer.com/isp/crystallographic/docs/sd_0311005 (accessed 11.12.20).Search in Google Scholar

Bard, A. J., Faulkner, L. R. (2002). Allen J. Bard and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russ. J. Electrochem., 38, 1364–1365.10.1023/A:1021637209564Search in Google Scholar

Bothra, P., Pati, S. K. (2016). Activity of water oxidation on pure and (Fe, Ni, and Cu)-substituted Co3O4. ACS Energy Lett., 1, 858–862.10.1021/acsenergylett.6b00369Search in Google Scholar

Brillouin, L. (1930). Les électrons libres dans les métaux et le role des réflexions de Bragg. J. Phys. Radium, 1, 377–400.10.1051/jphysrad:01930001011037700Search in Google Scholar

Chen, J., Selloni, A. (2012). Water adsorption and oxidation at the Co3O4 (110) surface. J. Phys. Chem. Lett., 3, 2808–2814.10.1021/jz300994eSearch in Google Scholar

Cook, T. R., Dogutan, D. K., Reece, S. Y., Surendranath, Y., Teets, T. S., Nocera, D. G. (2010). Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev., 110, 6474–6502.10.1021/cr100246c21062098Search in Google Scholar

Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 57, 1505–1509.10.1103/PhysRevB.57.1505Search in Google Scholar

García-Mota, M., Bajdich, M., Viswanathan, V., Vojvodic, A., Bell, A. T., Nørskov, J. K. (2012). Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C, 116, 21077–21082.10.1021/jp306303ySearch in Google Scholar

García-Mota, M., Vojvodic, A., Metiu, H., Man, I. C., Su, H. Y., Rossmeisl, J., Nørskov, J. K. (2011). Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. Chem. Cat. Chem., 3, 1607–1611.10.1002/cctc.201100160Search in Google Scholar

Henkelman, G., Arnaldsson, A., Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Comput. Materi. Sci., 36, 354–360.10.1016/j.commatsci.2005.04.010Search in Google Scholar

Hu, C., Zhang, L., Gong, J. (2019). Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci., 12, 2620–2645.10.1039/C9EE01202HSearch in Google Scholar

Kaptagay, G. A., Inerbaev, T. M., Akilbekov, A. T., Koilyk, N. O., Abuova, A. U., Sandibaeva, N. A. (2020). First principles modelling of the N-doped Co<inf>0.5</inf> -terminated (0 0 1) Co<inf>3</inf>O<inf>4</inf> surface. Nucl. Instrum. Meth. Phys. Res. Section B, 465, 11–14.10.1016/j.nimb.2019.11.012Search in Google Scholar

Kaptagay, G. A. A., Inerbaev, T. M. M., Mastrikov, Yu. A., Kotomin, E. A. A., Akilbekov, A. T. T. (2015). Water interaction with perfect and fluorine-doped Co<inf>3</inf>O<inf>4</inf> (100) surface. Solid State Ionics, 277, 77–82.10.1016/j.ssi.2015.03.012Search in Google Scholar

Kaptagay, G. A. A., Mastrikov, Y. A. A., Kotomin, E. A. A. (2018). First-principles modelling of N-doped Co<inf>3</inf>O<inf>4</inf>. Latv. J. Phys. Techn. Sci., 55, 36–42.Search in Google Scholar

Kohn, W., Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138.10.1103/PhysRev.140.A1133Search in Google Scholar

Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15–50.10.1016/0927-0256(96)00008-0Search in Google Scholar

Kresse, G., Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758–1775.10.1103/PhysRevB.59.1758Search in Google Scholar

Liao, P., Keith, J. A., Carter, E. A. (2012). Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dop-ants for electrocatalysis. J. Amer. Chem. Soc., 134, 13296–13309.10.1021/ja301567f22788792Search in Google Scholar

Liu, L., Jiang, Z., Fang, L., Xu, H., Zhang, H., Gu, X., Wang, Y. (2017). Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces, 9, 27736–27744.10.1021/acsami.7b0779328758720Search in Google Scholar

Man, I. C., Su, H. Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., N¸rskov, J. K., Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem. Cat. Chem., 3, 1159–1165.10.1002/cctc.201000397Search in Google Scholar

Monkhorst, H. J., Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B., 13, 5188–5192.10.1103/PhysRevB.13.5188Search in Google Scholar

Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., Inoue, M. (2007). Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catalysis Today,120, 145–150.10.1016/j.cattod.2006.07.042Search in Google Scholar

Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

Reier, T., Oezaslan, M., Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysism,2, 1765–1772.10.1021/cs3003098Search in Google Scholar

Valdés, Á., Qu, Z. W., Kroes, G. J., Rossmeisl, J., Nørskov, J. K. (2008). Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C, 112, 9872–9879.10.1021/jp711929dSearch in Google Scholar

Wang, Z., Liu, H., Ge, R., Ren, X., Ren, J., Yang, D., Zhang, L., Sun, X. (2018). Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catalysis, 8, 2236–2241.10.1021/acscatal.7b03594Search in Google Scholar

Wang, Z., Xu, W., Chen, X., Peng, Y., Song, Y., Lv, C., Liu, H., Sun, J., Yuan, D., Li, X., Guo, X., Yang, D., Zhang, L. (2019). Defect-rich nitrogen doped Co3O4 /C porous nanocubes Enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater., 29, 1902875.Search in Google Scholar

Xu, L., Wang, Z., Wang, J., Xiao, Z., Huang, X., Liu, Z., Wang, S. (2017). N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 28, 165402.10.1088/1361-6528/aa638128319036Search in Google Scholar

Xu, Y., Zhang, F., Sheng, T., Ye, T., Yi, D., Yang, Y., Liu, S., Wang, X., Yao, J. (2019). Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction. J. Mater. Chem. A, 7, 23191–23198.10.1039/C9TA08379KSearch in Google Scholar

Yu, M., Trinkle, D. R. (2011). Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys., 134, 064111.10.1063/1.355371621322665Search in Google Scholar

Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., Sojka, Z. (2010). Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. J. Phys. Chem. C, 114, 22245–22253.10.1021/jp109264bSearch in Google Scholar

eISSN:
1407-009X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Allgemein, Mathematik, Allgemeines