1. bookVolume 73 (2019): Issue 2 (May 2019)
14 Sep 2008
6 Hefte pro Jahr
access type Open Access

Alterations of The Stem-Like Properties in The Breast Cancer Cell Line MDA-MB-231 Induced by Single Pulsed Doxorubicin Treatment

Online veröffentlicht: 07 Apr 2019
Seitenbereich: 89 - 99
Eingereicht: 07 Nov 2018
Akzeptiert: 06 Feb 2019
14 Sep 2008
6 Hefte pro Jahr

Development of chemoresistance remains a significant limitation for the treatment of cancer and contributes to recurrence of the disease. Both intrinsic and acquired mechanisms of chemoresistance are characteristics of cancer stem cells (CSCs) or stem-like cells (SLCs). The aim of the study was to assess the stem-like properties in the breast cancer cell line MDA-MB-231 during and after pulsed treatment with doxorubicin (DOX) in comparison to the untreated controls.The experimental cultures were exposed to therapeutic concentration of DOX for 48 hours (treatment cultures), and subcultured to post-treatment cultures 24 hours after the removal of DOX. Stem-like properties of the cellular populations in the treatment and post--treatment cultures were assessed by the expression of the stem-cell marker genes (CD24, CD44, ITGA6, ITGB1, POU5F1, NANOG, ALDH1A1), colony-formation efficiency, growth rates, and sensitivity to DOX, 5-fluorouracil (5FU), cisplatin (CIS), and vinblastine (VBL). Exposure to DOX induced formation of giant polyploid cells that persisted in the post-treatment culture. The recovery period was characterised by a decrease in the proliferation rate, viability, and cellular adherence. The post-treatment cultures displayed decreased sensitivity to DOX and increased sensitivities to 5FU, CIS, and VBL. Cells treated with DOX displayed increased expression levels of CD24, CD44, and ALDH1A, while their expression levels at least partially normalised in the post-treatment culture. The post-treatment cultures demonstrated significantly increased colony-formation ability. During treatment with sub-lethal levels of doxorubicin and during the acute recovery period, the survival mechanisms in the breast cancer cell line MDA-MB-231 may be mediated by formation of the cellular population with stem-like properties.

Achuthan, S., Santhoshkumar, T. R., Prabhakar, J., Nair, S. A., Pillai, M. R. (2011). Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J. Biol. Chem., 286 (43), 37813–37829.Search in Google Scholar

Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA,100 (7), 3983–3988.Search in Google Scholar

Anonymous (2018). R: A Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna. Available from: https://www.R-project.org/ (accessed 20.01.2019).Search in Google Scholar

Brooks, D. L. P., Schwab, L. P., Krutilina, R., Parke, D. N., Sethuraman, A., Hoogewijs, D., Schörg, A., Gotwald, L., Fan, M., Wenger, R. H., Seagroves, T. N. (2016). ITGA6 is directly regulated by hypoxia- inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol. Cancer, 15, 26.Search in Google Scholar

Cortós-Funes, H., Coronado, C. (2007). Role of anthracyclines in the era of targeted therapy. Cardiovasc. Toxicol.,7 (2), 56–60.Search in Google Scholar

Cox, J., Weinman, S. (2016). Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol.,3 (1), 57–59.Search in Google Scholar

Dasari, S., Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol.,740, 364–378.Search in Google Scholar

Dean, M., Fojo, T., Bates, S. (2005). Tumour stem cells and drug resistance. Nat. Rev. Cancer, 5 (4), 275–284.Search in Google Scholar

Dean, M., Hamon, Y., Chimini, G. (2001). The human ATP-binding cassette transporter superfamily. J. Lipid Res.,42 (7), 1007–1017.Search in Google Scholar

Deng, X., Apple, S., Zhao, H., Song, J., Lee, M., Luo, W., Wu, X., Chung, D., Pietras, R. J., Chang, H. R. (2017) CD24 expression and differential resistance to chemotherapy in triple-negative breast cancer. Oncotarget,8 (24), 38294–38308.Search in Google Scholar

El-Badawy, A., Ghoneim, M. A., Gabr, M. M., Salah, R. A., Mohamed, I. K., Amer, M., El-Badri, N. (2017). Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Res. Ther., 8 (1), 254.Search in Google Scholar

Erenpreisa, J., Ivanov, A., Wheatley, S. P., Kosmacek, E. A., Ianzini, F., Anisimov, A. P., Mackey, M., Davis, P. J., Illidge, T. M. (2008). Endopolyploidy in irradiated p53-deficient tumour cell lines: Persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol. Int.,32 (9), 1044–1056.Search in Google Scholar

Fei, F., Zhang, D., Yang, Z., Wang, S., Wang, X., Wu, Z., Wu, Q., Zhang, S. (2015). The number of polyploid giant cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis un human breast cancer. J. Exp. Clin. Cancer Res.,34, 158.Search in Google Scholar

Freshney, R. I. (2011). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Hoboken, NY.: Wiley-Blackwell. 728 pp.Search in Google Scholar

Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol.,57 (7), 727–741.Search in Google Scholar

Gottesman, M. M., Fojo, T., Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer,2 (1), 48–58.Search in Google Scholar

Hafner, M., Niepel, M., Chung, M., Sorger, P. K. (2016). Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods, 13 (6), 521–527.Search in Google Scholar

Hafner, M., Niepel, M., Sorger, P. K. (2017). Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics. Nat. Biotechnol.,35 (6), 52–54.Search in Google Scholar

Holohan, C., Van Schaeybroeck, S., Longley, D. B., Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 13 (10), 714–726.Search in Google Scholar

Hu, H., Wang, M., Guan, X., Yuan, Z., Liu, Z., Zou, C., Guiyu, W., Gao, X., Wang, X. (2018). Loss of ABCB4 attenuates the caspase-dependent apoptosis regulating resistance to 5-Fu in colorectal cancer. Biosci Rep.,38 (1), BSR20171428.Search in Google Scholar

Huang, Z. J., You, J., Luo, W. Y., Chen, B. S., Feng, Q. Z., Wu, B. L., Jiang, L., Luo, Q. (2015). Reduced tumorigenicity and drug resistance through the downregulation of octamer-binding protein 4 and Nanog transcriptional factor expression in human breast stem cells. Mol. Med. Rep.,11 (3), 1647–1654.Search in Google Scholar

Hwang-Verslues, W. W., Kuo, W. H., Chang, P. H., Pan, C. C., Wang, H. H., Tsai, S. T., Jeng, Y. M., Shew, J. Y., Kung, J. T., Chen, C. H., Lee, E. Y., Chang, K. J., Lee, W. H. (2009). Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS ONE, 4 (12), e8377.Search in Google Scholar

Jia, D., Tan, Y., Liu, H., Ooi, S., Li, L., Wright, K., Bennett, S., Addison, C.L., Wang, L. (2016). Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget,7 (1), 771–785.Search in Google Scholar

Kibria, G., Hatakeyama, H., Akiyama, K., Hida, K., Harashima, H. (2014). Comparative study of the sensitivities of cancer cells to doxorubicin, and relationships between the effect of the drug-efflux pump P-gp. Biol. Pharm. Bull., 37 (12), 1926–1935.Search in Google Scholar

Kim, W., Ryu, C. J. (2017). Cancer stem cell surface markers on normal stem cells. BMB Rep.,50 (6), 285–298.Search in Google Scholar

Leggett, S. E., Sim, J. Y., Rubins, J. E., Neronha, Z. J., Williams, K., Wong, I. Y. (2016). Morphological single cell profiling of the epithelial-mesenchymal transition. Integr. Biol. (Camb).,8 (11), 1133–1144.Search in Google Scholar

Liang, Y., Zhong, Z., Huang, Y., Deng, W., Cao, J., Tsao, G., Liu, Q., Pei, D., Kang, T., Zeng, Y.X. (2010). Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. J. Biol. Chem., 285 (7), 4931–4940.Search in Google Scholar

Ling, G. Q., Chen, D. B., Wang, B. Q., Zhang, L. S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncol. Lett.,4 (6), 1264–1268.Search in Google Scholar

Liu, P., Kumar, I. S., Brown, S., Kannappan, V., Tawari, P. E., Tang, J. Z., Jiang, W., Armesilla, A. L., Darling, J. L., Wang, W. (2013). Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Brit. J. Cancer, 109 (7), 1876–1885.Search in Google Scholar

Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 25 (4), 402–408.Search in Google Scholar

McDermott, M., Eustace, A. J., Busschots, S., Breen, L., Crown, J., Clynes, M., O’Donovan N., Stordal, B. (2014). In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: A practical guide with case studies. Front. Oncol., 4, 40.Search in Google Scholar

Mckenna, M. T., Weis, J. A., Barnes, S. L., Tyson, D. R., Miga, I., Quaranta, V., Yankeelov, T. E. (2017). Modeling approach for the study of doxorubicin treatment in triple negative breast cancer. Sc. Rep., 7 (1), 5725.Search in Google Scholar

Mirzayans, R., Andrais, B., Murray, D. (2018). Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers,10, 118.Search in Google Scholar

Moitra, K., Lou, H., Dean, M. (2011). Multidrug efflux pumps and cancer stem cells: Insights into multidrug resistance and therapeutic development. Clin. Pharmacol. Ther., 89 (4), 491–502.Search in Google Scholar

Niu, N., Zhang, J., Zhang, N., Mercado-Uribe, I., Tao, F., Han, Z., Pathak, S., Multani, A. S., Kuang, J., Yao, J., Bast, R.C., Sood, A.K., Hung, M.-C., Liu, J. (2016). Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis,5, e281.Search in Google Scholar

Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194 (4260), 23–28.Search in Google Scholar

Rajaraman, R., Guernsey, D. L., Rajaraman, M. M., Rajaraman, S. R. (2006). Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int., 6, 1–26.Search in Google Scholar

Rivera, E., Gomez, H. (2010). Chemotherapy resistance in metastatic breast cancer: The evolving role of ixabepilone. Breast Cancer Res.,12 (Suppl 2), S2.Search in Google Scholar

Saxena, M., Stephens, M. A., Pathak, H., Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis., 2, e179.Search in Google Scholar

Sheridan, C., Kishimoto, H., Fuchs, R. K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C. H., Goulet, R. Jr., Badve, S., Nakshatri, H. (2006). CD44+/CD24-Breast cancer cells exhibit enhanced invase properties: An early step necessary for metastasis. Breast Cancer Res., 8 (5), R59.Search in Google Scholar

Skehan, P., Storeng, R., Scudiero, D., Monks, A., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst.,82 (13), 1107–1112.Search in Google Scholar

Smith, L. Watson, M. B., O’Kane, S. L., Drew, P. J., Lind, M. J., Cawkwell, L. (2006). The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol. Cancer Ther.,5 (8), 2115–2120.Search in Google Scholar

Sun, L., Cabarcas, S. M., Farrar, W. L. (2012). Radioresistance and cancer stem cells: Survival of the fittest. J. Carcinogene Mutagenes, s1(01), 1–12.Search in Google Scholar

Sundaram, M., Guernsey, D. L., Rajaraman, M. M., Rajaraman, R. (2004). Neosis: A novel type of cell division in cancer. Cancer Biol. Ther.,3, 2017–2218.Search in Google Scholar

Tegze, B., Szállási, Z., Haltrich, I., Pénzváltó, Z., Tóth, Z., Likó, I., Gyorffy, B. (2012). Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance. PLoS ONE, 7 (2), 1–9.Search in Google Scholar

Vassilopoulos, A., Chisholm, C., Lahusen, T., Zheng, H., Deng, C. (2013). A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene,33 (47), 5477–5482.Search in Google Scholar

Vichai, V., Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1 (3), 1112–1116.Search in Google Scholar

Vinogradov, S., Wei, X. (2012). Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine (Lond)., 7 (4), 597–615.Search in Google Scholar

Wang, L., Li, P., Hu, W., Xia, Y., Hu, C., Liu, L., Jiang, X. (2017). CD44 + CD24 + subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species. Oncol. Lett.,14 (2), 1341–1346.Search in Google Scholar

Weihua, Z., Lin, Q., Ramoth, A. J., Fan, D., Fidler, I. J. (2011). Formation of solid tumors by a single multinucleated cancer cell. Cancer,117 (17), 4092–4099.Search in Google Scholar

Xiang, D., Shigdar, S., Bean, A. G., Bruce, M., Yang, W., Mathesh, M., Wang, T., Yin, W., Tran, P. H., Al Shamaileh, H., Barrero, R. A., Zhang, P. Z., Li, Y., Kong, L., Liu, K., Zhou, S. F., Hou, Y., He, A., Duan, W. (2017). Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics., 7 (17), 4071–4086.Search in Google Scholar

Zhang, S., Mercado-Uribe, I., Xing, Z., Sun, B., Kuang, J., Liu, J. (2014). Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene, 33 (1), 116–128.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo