Zitieren

THe Y, Wu N. Research Progress on Gestational Diabetes Mellitus and Endothelial Dysfunction Markers. Diabetes Metab Syndr Obes 2021;14: 983-990. Search in Google Scholar

Gao YH, Liu JZ, Wang RS, et al. Research progress on the relationship between vascular endothelial cell function and diabetes mellitus. J Shanxi Datong Univ 2020;36(04):50–54. Search in Google Scholar

Kornacki J, Gutaj P, Kalantarova A, et al. Endothelial Dysfunction in Pregnancy Complications. Biomedicines 2021;9(12):1756. Search in Google Scholar

Wagner DD, Frenette PS. The vessel wall and its interactions. Blood 2008;111(11):5271-81. Search in Google Scholar

Becker BF, Heindl B, Kupatt C, et al. Endothelial function and hemostasis. Z Kardiol 2000;89(3):160-7. Search in Google Scholar

Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2001; 280(2):F193-206. Search in Google Scholar

Hajjar, K.A., & Aird, W.C. (2021) The endothelium: A primer. In T.W.Post L.L.Leung (Eds), UpToDate. Search in Google Scholar

Busse R, Edwards G, Félétou M, et al. EDHF: bringing the concepts together. Trends Pharmacol Sci 2002;23(8):374-80. Search in Google Scholar

Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007;115(10):1285-95. Search in Google Scholar

Kinlay S, Behrendt D, Wainstein M, et al. Role of endothelin-1 in the active constriction of human atherosclerotic coronary arteries. Circulation 2001;104(10):1114-8. Search in Google Scholar

Dogné S, Flamion B, Caron N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol 2018; 38(7):1427-1439. Search in Google Scholar

Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med 2010; 363(7):689-91. Search in Google Scholar

Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 2008;28(3):387-91. Search in Google Scholar

Göbl CS, Bozkurt L, Yarragudi R, et al. Bio-markers of endothelial dysfunction in relation to impaired carbohydrate metabolism following pregnancy with gestational diabetes mellitus. Cardiovasc Diabetol 2014;13:138. Search in Google Scholar

Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 2013;123(2):540-1. Search in Google Scholar

Ferro D, Quintarelli C, Saliola M, et al. Prevalence of hyperfibrinolysis in patients with liver cirrhosis. Fibrinolysis 1993; 7:59-62 Search in Google Scholar

Kiouptsi K, Reinhardt C. Physiological Roles of the von Willebrand Factor-Factor VIII Interaction. Subcell Biochem 2020;94:437-464. Search in Google Scholar

D’Amico G, Morabito A, Pagliaro L, et al. Survival and prognostic indicators in compensated and decompensated cirrhosis. Dig Dis Sci 1986;31(5):468-75. Search in Google Scholar

Szmitko PE, Wang CH, Weisel RD, et al. New markers of inflammation and endothelial cell activation: Part I. Circulation 2003;108(16):1917-23. Search in Google Scholar

Brown KA, Brain SD, Pearson JD, et al. Neutrophils in development of multiple organ failure in sepsis. Lancet 2006;368(9530):157-69. Search in Google Scholar

McCuskey RS, Urbaschek R, Urbaschek B. The microcirculation during endotoxemia. Cardiovasc Res 1996;32(4):752-63. Search in Google Scholar

Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res 2003;11(11):1278-89. Search in Google Scholar

Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol 2007; 46(5):927-34. Search in Google Scholar

Galle J, Quaschning T, Seibold S, et al. Endothelial dysfunction and inflammation: what is the link? Kidney Int Suppl 2003;(84):S45-9. Search in Google Scholar

Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science1997;275(5302):964-7. Search in Google Scholar

Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003;348(7):593-600. Search in Google Scholar

Woywodt A, Bahlmann FH, De Groot K, et al. Circulating endothelial cells: life, death, detachment and repair of the endothelial cell layer. Nephrol Dial Transplant 2002;17(10):1728-30. Search in Google Scholar

Mano T, Masuyama T, Yamamoto K, et al. Endothelial dysfunction in the early stage of atherosclerosis precedes appearance of intimal lesions assessable with intravascular ultrasound. Am Heart J 1996;131(2):231-8. Search in Google Scholar

Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes 1995;44(7):721-6. Search in Google Scholar

Yzydorczyk C, Armengaud JB, Peyter AC, et al. Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. J Dev Orig Health Dis 2017;8(4):448-464. Search in Google Scholar

McDonald SD, Malinowski A, Zhou Q, et al. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J 2008;156(5):918-30. Search in Google Scholar

Westbrook RH, Dusheiko G, Williamson C. Pregnancy and liver disease. J Hepatol 2016; 64(4):933-45. Search in Google Scholar

Lopes van Balen VA, van Gansewinkel TAG, de Haas S, et al. Physiological adaptation of endothelial function to pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2017;50(6):697-708. Search in Google Scholar

Duvekot JJ, Cheriex EC, Pieters FA, et al. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am J Obstet Gynecol 1993;169(6):1382-92. Search in Google Scholar

Tkachenko O, Shchekochikhin D, Schrier RW. Hormones and hemodynamics in pregnancy. Int J Endocrinol Metab 2014;12(2):e14098. Search in Google Scholar

Reese JA, Peck JD, Deschamps DR, et al. Platelet Counts during Pregnancy. N Engl J Med 2018;379(1):32-43. Search in Google Scholar

Ciobanu AM, Colibaba S, Cimpoca B, et al. Thrombocytopenia in Pregnancy. Maedica (Bucur) 2016;11(1):55-60. Search in Google Scholar

Durnwald, C.(2021). Gestational diabetes mellitus: Screening, diagnosis, and prevention. In T.W.Post, D.M.Nathan & E.F.Werner (Eds),Up-ToDate Search in Google Scholar

Castro MA, Fassett MJ, Reynolds TB, et al. Reversible peripartum liver failure: a new perspective on the diagnosis, treatment, and cause of acute fatty liver of pregnancy, based on 28 consecutive cases. Am J Obstet Gynecol 1999;181(2):389-95. Search in Google Scholar

Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30 Suppl A(Suppl A):S32-7. Search in Google Scholar

Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 2003; 69(1):1-7. Search in Google Scholar

Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006; 27(9-10):939-58. Search in Google Scholar

Augus,P., & Sibai,B.M. (2022). Preeclampsia: Clinical features and diagnosis. In T.W.Post, C.J.Lockwood (Eds), UpToDate. Search in Google Scholar

Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotropho-blasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 1997;99(9):2152-64. Search in Google Scholar

Roberts JM, Redman CW. Pre-eclampsia: more than pregnancy-induced hypertension. Lancet 1993;341(8858):1447-51. Erratum in: Lancet 1993;342(8869):504. Search in Google Scholar

Karumanchi, S.A., Lim,K.H & August,P.(2021). Preeclampsia: Pathogenesis. In T.W. Post V. Berghella (Eds) UpToDate. Search in Google Scholar

Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 2008;51(4):970-5. Search in Google Scholar

Redman CW, Sargent IL. Preeclampsia and the systemic inflammatory response. Semin Nephrol 2004;24(6):565-70. Search in Google Scholar

Bakrania BA, Spradley FT, Drummond HA, et al. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020;11(1):1315-1349. Search in Google Scholar

Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr 1967;71(2):159-63. Search in Google Scholar

Zhang J, Merialdi M, Platt LD, et al. Defining normal and abnormal fetal growth: promises and challenges. Am J Obstet Gynecol 2010;202(6):522-8. Search in Google Scholar

Zur RL, Kingdom JC, Parks WT, et al. The Placental Basis of Fetal Growth Restriction. Obstet Gynecol Clin North Am 2020;47(1):81-98. Search in Google Scholar

Pathirage NA, Cocquebert M, Sadovsky Y, et al. Homeobox gene transforming growth factor β-induced factor-1 (TGIF-1) is a regulator of villous trophoblast differentiation and its expression is increased in human idiopathic fetal growth restriction. Mol Hum Reprod 2013;19(10):665-75. Search in Google Scholar

Pons R.S, Rockett F.C, de Almeida Rubin B, et al. Risk factors for gestational diabetes mellitus in a sample of pregnant women diagnosed with the disease. Diabetol. Metab. Syndrome 7 (Suppl) 2015; A80. Search in Google Scholar

Thorpe LE, Berger D, Ellis JA, et al. Trends and racial/ethnic disparities in gestational diabetes among pregnant women in New York City, 1990-2001. Am J Public Health 2005;95(9):1536-9. Search in Google Scholar

Dodd JM, Crowther CA, Antoniou G, et al. Screening for gestational diabetes: the effect of varying blood glucose definitions in the prediction of adverse maternal and infant health outcomes. Aust N Z J Obstet Gynaecol 2007;47(4):307-12. Search in Google Scholar

Getahun D, Fassett MJ, Jacobsen SJ. Gestational diabetes: risk of recurrence in subsequent pregnancies. Am J Obstet Gynecol 2010;203(5):467. e1-6. Search in Google Scholar

Yefet E, Schwartz N, Sliman B, et al. Good glycemic control of gestational diabetes mellitus is associated with the attenuation of future maternal cardiovascular risk: a retrospective cohort study. Cardiovasc Diabetol 2019;18(1):75. Search in Google Scholar

Yuan NX, Zhai H, Du DQ, et al. Progress in research on the pathogenesis of gestational diabetes mellitus. J Guangxi Med Univ 2019;36(02):321–324 Search in Google Scholar

Díaz-Pérez FI, Hiden U, Gauster M, et al. Post-transcriptional down regulation of ICAM-1 in feto-placental endothelium in GDM. Cell Adh Migr 2016;10(1-2):18-27. Search in Google Scholar

Yang R, Gulixiaxi MHYTJ. Relationship between levels of APN, VCAM-1 in umbilical cord blood and macrosomia born by women with gestational diabetes mellitus. Chin Med Herald 2016;13(24):109–112 Search in Google Scholar

Mordwinkin NM, Ouzounian JG, Yedigarova L, et al. Alteration of endothelial function markers in women with gestational diabetes and their fetuses. J Matern Fetal Neonatal Med 2013;26(5):507-12. Search in Google Scholar

Bajaj HS, Ye C, Hanley AJ, et al. Biomarkers of vascular injury and endothelial dysfunction after recent glucose intolerance in pregnancy. Diab Vasc Dis Res 2018;15(5):449-457. Search in Google Scholar

Zhao LL, Yang XQ. Expression and correlation of TNF-α and VCAM-1 in gestational diabetes mellitus. J Med Res 2019;48 (04):78–82 Search in Google Scholar

Su N, Fu DX, Wang GY, et al. Relationship between hs-CRP sICAM-1 and insulin resistance in patients with gestational diabetes. Shanxi Med J 2013;42(04):372–374. Search in Google Scholar

Lappas M. Markers of endothelial cell dysfunction are increased in human omental adipose tissue from women with pre-existing maternal obesity and gestational diabetes. Metabolism 2014;63(6):860-73. Search in Google Scholar

Syngelaki A, Kotecha R, Pastides A, et al. First-trimester biochemical markers of placentation in screening for gestational diabetes mellitus. Metabolism 2015;64(11):1485-9. Search in Google Scholar

Arya S, Ye C, Connelly PW, et al. Asymmetric dimethylarginine and arginine metabolites in women with and without a history of gestational diabetes. J Diabetes Complications 2017;31(6):964-970. Search in Google Scholar

Jin ZW, Huang HM. Changes in plasma asymmetric dimethylarginine level in patients with gestational diabetes mellitus and its correlation with plasma NO and NOS levels. Shandong Med J 2018;58(03):56–58. Search in Google Scholar

Wang L, Zhang SY. A new marker of vascular endothelial injury-asymmetric dimethylarginine. Chin J Clin 2011;5(16):4795–4798. Search in Google Scholar

Yan YH, Lu JQ, Feng ZJ, et al. Investigation on correlation between PAI-1 and insulin resistance in patients with gestational diabetes mellitus. Matern Child Health Care Chin 2010;25 (25):3541–3543. Search in Google Scholar

Salmi AA, Zaki NM, Zakaria R, et al. Arterial stiffness, inflammatory and pro-atherogenic markers in gestational diabetes mellitus. Vasa 2012;41(2):96-104. Search in Google Scholar

Carpenter MW. Gestational diabetes, pregnancy hypertension, and late vascular disease. Diabetes Care 2007;30 Suppl 2:S246-50. Erratum in: Diabetes Care 2007;30(12):3154. Search in Google Scholar

Li HB, Ling M, Zhou SR. Relationship between inflammatory factors and insulin resistance in patients with gestational diabetes mellitus. Chin Community Doctors 2020;36(33):126–127. Search in Google Scholar

Forbes JM, Thallas V, Thomas MC, et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J 2003;17(12):1762-4. Search in Google Scholar

Wendt T, Bucciarelli L, Qu W, et al. Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler Rep 2002;4(3):228-37. Search in Google Scholar

Frisbee JC, Stepp DW. Impaired NO-dependent dilation of skeletal muscle arterioles in hyper-tensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol 2001;281(3):H1304-11. Search in Google Scholar

Ando R, Ueda S, Yamagishi S, et al. Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction. Diab Vasc Dis Res 2013;10(5):436-41. Search in Google Scholar

Retnakaran R, Qi Y, Connelly PW, et al. Glucose intolerance in pregnancy and postpartum risk of metabolic syndrome in young women. J Clin Endocrinol Metab 2010;95(2):670-7. Search in Google Scholar

Retnakaran R, Qi Y, Connelly PW, et al. The graded relationship between glucose tolerance status in pregnancy and postpartum levels of low-density-lipoprotein cholesterol and apolipo-protein B in young women: implications for future cardiovascular risk. J Clin Endocrinol Metab 2010;95(9):4345-53. Search in Google Scholar

Vounzoulaki E, Khunti K, Abner SC, et al. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ 2020;369:m1361. Search in Google Scholar

Shah BR, Retnakaran R, Booth GL. Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care 2008;31(8):1668-9. Search in Google Scholar

Kessous R, Shoham-Vardi I, Pariente G, et al. An association between gestational diabetes mellitus and long-term maternal cardiovascular morbidity. Heart 2013;99(15):1118-21. Search in Google Scholar

Pace R, Brazeau AS, Meltzer S, et al. Conjoint Associations of Gestational Diabetes and Hyper-tension With Diabetes, Hypertension, and Cardiovascular Disease in Parents: A Retrospective Cohort Study. Am J Epidemiol 2017;186(10):1115-1124. Search in Google Scholar

Hauth JC, Ewell MG, Levine RJ, et al. Pregnancy outcomes in healthy nulliparas who developed hypertension. Calcium for Preeclampsia Prevention Study Group. Obstet Gynecol 2000;95(1):24-8. Search in Google Scholar

Buchbinder A, Sibai BM, Caritis S, et al. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Adverse perinatal outcomes are significantly higher in severe gestational hypertension than in mild preeclampsia. Am J Obstet Gynecol 2002;186(1):66-71. Search in Google Scholar

Hnat MD, Sibai BM, Caritis S, et al. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine-Units. Perinatal outcome in women with recurrent preeclampsia compared with women who develop preeclampsia as nulliparas. Am J Obstet Gynecol 2002;186(3):422-6. Erratum in: Am J Obstet Gynecol 2003;189(1):244. Search in Google Scholar

Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol 2020;135(6):e237-e260. Search in Google Scholar

Melvin, L.M., &Funai,E.F. (2022).Gestational hypertension. In T.W .Post C.J.Lockwood (Eds), UpToDate. Search in Google Scholar

Yoder SR, Thornburg LL, Bisognano JD. Hyper-tension in pregnancy and women of childbearing age. Am J Med 2009;122(10):890-5. Search in Google Scholar

Saudan P, Brown MA, Buddle ML, et al. Does gestational hypertension become pre-eclampsia? Br J Obstet Gynaecol 1998;105(11):1177-84. Search in Google Scholar

Melamed N, Ray JG, Hladunewich M, et al. Gestational hypertension and preeclampsia: are they the same disease? J Obstet Gynaecol Can 2014;36(7):642-647. Search in Google Scholar

Wu Y, Xiong X, Fraser WD, et al. Association of uric acid with progression to preeclampsia and development of adverse conditions in gestational hypertensive pregnancies. Am J Hypertens 2012;25(6):711-7. Search in Google Scholar

Pandey AK, Singhi EK, Arroyo JP, et al. Mechanisms of VEGF (Vascular Endothelial Growth Factor) Inhibitor-Associated Hypertension and Vascular Disease. Hypertension 2018;71(2):e1-e8. Search in Google Scholar

Burke SD, Zsengellér ZK, Khankin EV, et al. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia. J Clin Invest 2016;126(7):2561-74. Search in Google Scholar

Santillan MK, Santillan DA, Scroggins SM, et al. Vasopressin in preeclampsia: a novel very early human pregnancy biomarker and clinically relevant mouse model. Hypertension 2014;64(4):852-9. Erratum in: Hypertension. 2015 Mar;65(3):e9. Search in Google Scholar

Jain A. Endothelin-1: a key pathological factor in pre-eclampsia? Reprod Biomed Online 2012;25(5):443-9. Search in Google Scholar

Thorin E, Webb DJ. Endothelium-derived endothelin-1. Pflugers Arch 2010;459(6):951-8. Search in Google Scholar

Taddei S, Virdis A, Ghiadoni L, et al. Role of endothelin in the control of peripheral vascular tone in human hypertension. Heart Fail Rev 2001;6(4):277-85. Search in Google Scholar

Morris R, Spencer SK, Kyle PB, et al. Hypertension in an Animal Model of HELLP Syndrome is Associated With Activation of Endothelin 1. Reprod Sci 2016;23(1):42-50. Search in Google Scholar

Granger JP, Spradley FT, Bakrania BA. The Endothelin System: A Critical Player in the Pathophysiology of Preeclampsia. Curr Hyper-tens Rep 2018;20(4):32. Search in Google Scholar

Matsuura A, Kawashima S, Yamochi W, et al. Vascular endothelial growth factor increases endothelin-converting enzyme expression in vascular endothelial cells. Biochem Biophys Res Commun 1997;235(3):713-6. Search in Google Scholar

Matsuura A, Yamochi W, Hirata K, et al. Stimulatory interaction between vascular endothelial growth factor and endothelin-1 on each gene expression. Hypertension 1998;32(1):89-95. Search in Google Scholar

Bernardi F, Constantino L, Machado R, et al. Plasma nitric oxide, endothelin-1, arginase and superoxide dismutase in pre-eclamptic women. J Obstet Gynaecol Res 2008;34(6):957-63. Search in Google Scholar

Aydin S, Benian A, Madazli R, et al. Plasma malondialdehyde, superoxide dismutase, sE-selectin, fibronectin, endothelin-1 and nitric oxide levels in women with preeclampsia. Eur J Obstet Gynecol Reprod Biol 2004;113(1):21-5. Search in Google Scholar

Karakus S, Bozoklu Akkar O, Yildiz C, et al. Serum levels of ET-1, M30, and angiopoietins-1 and -2 in HELLP syndrome and preeclampsia compared to controls. Arch Gynecol Obstet 2016; 293(2):351-9. Search in Google Scholar

Shaarawy M, Abdel-Magid AM. Plasma endothelin-1 and mean arterial pressure in the prediction of pre-eclampsia. Int J Gynaecol Obstet 2000;68(2):105-11. Search in Google Scholar

Yano K, Gale D, Massberg S, et al. Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 2007;109(2):613-5. Search in Google Scholar

Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2012; 2(1):a006429. Search in Google Scholar

Hajjar KA. Vascular biology. In: Clinical Hematology, Young NS, Gerson SL, High KA (Eds), Mosby Elsevier, Philadelphia 2006. p.125. Search in Google Scholar

Amatschek S, Kriehuber E, Bauer W, et al. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Blood 2007;109(11):4777-85. Search in Google Scholar

Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002;1(1):1. Search in Google Scholar

Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 2006;43(2 Suppl 1):S121-31. Search in Google Scholar

Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 2002;35(2):478-91. Search in Google Scholar

Graupera M, García-Pagán JC, Abraldes JG, et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 2003;37(1):172-81. Search in Google Scholar

Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015;7(3):443-59. Search in Google Scholar

Clapp BR, Hingorani AD, Kharbanda RK, et al. Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc Res 2004;64(1):172-8. Search in Google Scholar

Dudenhoefer AA, Loureiro-Silva MR, Cadelina GW, et al. Bioactivation of nitroglycerin and vasomotor response to nitric oxide are impaired in cirrhotic rat livers. Hepatology 2002;36(2):381-5. Search in Google Scholar

Mehta G, Gustot T, Mookerjee RP, et al. Inflammation and portal hypertension - the undiscovered country. J Hepatol 2014;61(1):155-63. Search in Google Scholar

Mori T, Okanoue T, Sawa Y, et al. Defenestration of the sinusoidal endothelial cell in a rat model of cirrhosis. Hepatology 1993;17(5):891-7. Search in Google Scholar

Bhunchet E, Fujieda K. Capillarization and venularization of hepatic sinusoids in porcine serum-induced rat liver fibrosis: a mechanism to maintain liver blood flow. Hepatology 1993;18(6):1450-8. Search in Google Scholar

Llach J, Ginès P, Arroyo V, et al. Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology 1988;94(2):482-7. Search in Google Scholar

Abalos E, Cuesta C, Grosso AL, et al. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol 2013; 170:1. Search in Google Scholar

Bartsch E, Medcalf KE, Park AL, et al. High Risk of Pre-eclampsia Identification Group. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 2016;353:i1753. Search in Google Scholar

O’Brien TE, Ray JG, Chan WS. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology 2003;14(3):368-74. Search in Google Scholar

Nevis IF, Reitsma A, Dominic A, et al. Pregnancy outcomes in women with chronic kidney disease: a systematic review. Clin J Am Soc Nephrol 2011;6(11):2587-98. Search in Google Scholar

Visintin C, Mugglestone MA, Almerie MQ, et al. Management of hypertensive disorders during pregnancy: summary of NICE guidance. BMJ 2010;341:c2207. Search in Google Scholar

Fishel Bartal M, Lindheimer MD, Sibai BM. Proteinuria during pregnancy: definition, pathophysiology, methodology, and clinical significance. Am J Obstet Gynecol 2022;226(2S):S819-S834. Search in Google Scholar

Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens 2014;4(2):97-104. Search in Google Scholar

Hjartardottir S, Leifsson BG, Geirsson RT, et al. Recurrence of hypertensive disorder in second pregnancy. Am J Obstet Gynecol 2006;194(4):916-20. Search in Google Scholar

Brown MA, Mackenzie C, Dunsmuir W, et al. Can we predict recurrence of pre-eclampsia or gestational hypertension? BJOG 2007;114(8):984-93. Search in Google Scholar

Sibai BM. Maternal and uteroplacental hemodynamics for the classification and prediction of preeclampsia. Hypertension 2008;52(5):805-6. Search in Google Scholar

Roberts JM, Rich-Edwards JW, McElrath TF, et al. Global Pregnancy Collaboration. Sub-types of Preeclampsia: Recognition and Determining Clinical Usefulness. Hypertension 2021;77(5):1430-1441. Search in Google Scholar

Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol 2013;209(6):544.e1-544.e12. Search in Google Scholar

Ilekis JV, Reddy UM, Roberts JM. Preeclampsia--a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci 2007;14(6):508-23. Search in Google Scholar

Lachmeijer AM, Dekker GA, Pals G, et al. Searching for preeclampsia genes: the current position. Eur J Obstet Gynecol Reprod Biol 2002;105(2):94-113. Search in Google Scholar

Skjaerven R, Vatten LJ, Wilcox AJ, et al. Recurrence of pre-eclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. BMJ 2005;331(7521):877. Search in Google Scholar

Giannakou K, Evangelou E, Papatheodorou SI. Genetic and non-genetic risk factors for pre-eclampsia: umbrella review of systematic reviews and meta-analyses of observational studies. Ultrasound Obstet Gynecol 2018;51(6):720-730. Search in Google Scholar

Furuya M, Ishida J, Aoki I, et al. Pathophysiology of placentation abnormalities in pregnancy-induced hypertension. Vasc Health Risk Manag 2008;4(6):1301-13. Search in Google Scholar

Lim KH, Zhou Y, Janatpour M, et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol 1997;151(6):1809-18. Search in Google Scholar

Aouache R, Biquard L, Vaiman D, et al. Oxidative Stress in Preeclampsia and Placental Diseases. Int J Mol Sci 2018;19(5):1496. Search in Google Scholar

Ozeki A, Tani K, Takahashi H, et al. Preeclamptic patient-derived circulating cell-free DNA activates the production of inflammatory cytokines via toll-like receptor 9 signalling in the human placenta. J Hypertens 2019;37(12):2452-2460. Search in Google Scholar

Xue P, Fan W, Diao Z, et al. Up-regulation of PTEN via LPS/AP-1/NF-κB pathway inhibits trophoblast invasion contributing to preeclampsia. Mol Immunol 2020;118:182-190. Search in Google Scholar

He B, Yang X, Li Y, et al. TLR9 (Toll-Like Receptor 9) Agonist Suppresses Angiogenesis by Differentially Regulating VEGFA (Vascular Endothelial Growth Factor A) and sFLT1 (Soluble Vascular Endothelial Growth Factor Receptor 1) in Preeclampsia. Hypertension 2018;71(4):671-680. Search in Google Scholar

Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011;2(12):1097-105. Search in Google Scholar

Neagoe PE, Lemieux C, Sirois MG. Vascular endothelial growth factor (VEGF)-A165-induced prostacyclin synthesis requires the activation of VEGF receptor-1 and -2 heterodimer. J Biol Chem 2005;280(11):9904-12. Search in Google Scholar

De Falco S. The discovery of placenta growth factor and its biological activity. Exp Mol Med 2012;44(1):1-9. Search in Google Scholar

Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669-76. Search in Google Scholar

Friedman SA, Schiff E, Emeis JJ, et al. Biochemical corroboration of endothelial involvement in severe preeclampsia. Am J Obstet Gynecol 1995;172(1 Pt 1):202-3. Search in Google Scholar

Hsu CD, Iriye B, Johnson TR, et al. Elevated circulating thrombomodulin in severe preeclampsia. Am J Obstet Gynecol 1993;169(1):148-9. Erratum in: Am J Obstet Gynecol 1994;171(4):1165. Search in Google Scholar

Pascoal IF, Lindheimer MD, Nalbantian-Brandt C, et al. Preeclampsia selectively impairs endothelium-dependent relaxation and leads to oscillatory activity in small omental arteries. J Clin Invest 1998;101(2):464-70. Search in Google Scholar

Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003;111(5):649-58. Search in Google Scholar

Koga K, Osuga Y, Yoshino O, et al. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab 2003;88(5):2348-51. Search in Google Scholar

McKeeman GC, Ardill JE, Caldwell CM, et al. Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop. Am J Obstet Gynecol 2004;191(4):1240-6. Search in Google Scholar

Suzuki H, Nagayama S, Hirashima C, et al. Markedly higher sFlt-1/PlGF ratio in a woman with acute fatty liver of pregnancy compared with HELLP syndrome. J Obstet Gynaecol Res 2019;45(1):96-103. Search in Google Scholar

Widmer M, Villar J, Benigni A, et al. Mapping the theories of preeclampsia and the role of angiogenic factors: a systematic review. Obstet Gynecol 2007;109(1):168-80. Search in Google Scholar

Purwosunu Y, Sekizawa A, Yoshimura S, et al. Expression of angiogenesis-related genes in the cellular component of the blood of preeclamptic women. Reprod Sci 2009;16(9):857-64. Search in Google Scholar

Nagamatsu T, Fujii T, Kusumi M, et al. Cytotrophoblasts up-regulate soluble fms-like tyro-sine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology 2004;145(11):4838-45. Search in Google Scholar

Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995;129(4):895-8. Search in Google Scholar

Weissgerber TL, Rajakumar A, Myerski AC, et al. Vascular pool of releasable soluble VEGF receptor-1 (sFLT1) in women with previous preeclampsia and uncomplicated pregnancy. J Clin Endocrinol Metab 2014;99(3):978-87. Search in Google Scholar

Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999;180(2 Pt 1):499-506. Search in Google Scholar

Gu Y, Groome LJ, Alexander JS, et al. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia. Placenta 2012;33(10):803-9. Search in Google Scholar

Moran P, Lindheimer MD, Davison JM. The renal response to preeclampsia. Semin Nephrol 2004;24(6):588-95. Search in Google Scholar

Mikolasevic I, Filipec-Kanizaj T, Jakopcic I, et al. Liver Disease During Pregnancy: A Challenging Clinical Issue. Med Sci Monit 2018;24:4080-4090. Search in Google Scholar

Tomimatsu T, Mimura K, Matsuzaki S, et al. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dys-function Due to Placental Antiangiogenic Factors. Int J Mol Sci 2019;20(17):4246. Search in Google Scholar

Levine RJ, Qian C, Maynard SE, et al. Serum sFlt1 concentration during preeclampsia and mid trimester blood pressure in healthy nulliparous women. Am J Obstet Gynecol 2006;194(4):1034-41. Search in Google Scholar

Harskamp RE, Zeeman GG. Preeclampsia: at risk for remote cardiovascular disease. Am J Med Sci 2007;334(4):291-5. Search in Google Scholar

Norwitz, E.R. (2022). Eclapmsia. In T.W.Post C.J.Lockwood & S.C.Schachter (Eds), UpToDate. Search in Google Scholar

Sibai BM. Magnesium sulfate prophylaxis in preeclampsia: Lessons learned from recent trials. Am J Obstet Gynecol 2004;190(6):1520-6. Search in Google Scholar

Marra A, Vargas M, Striano P, et al. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med Hypotheses 2014;82(5):619-22. Search in Google Scholar

Johnson AC, Tremble SM, Chan SL, et al. Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One 2014;9(11):e113670. Search in Google Scholar

Sibai, B.M. (2021). HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets). In T.W.Post, C.J.Lockwood & K.D.Lindor (Eds), UpToDate. Search in Google Scholar

Sibai BM, Ramadan MK, Usta I, et al. Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome). Am J Obstet Gynecol 1993;169(4):1000-6. Search in Google Scholar

Sibai BM. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 2004;103(5 Pt 1):981-91. Search in Google Scholar

August, P., & Sibai,B.M. (2021). Hypertensive disorders in pregnancy: Approach to differential diagnosis. In T.W. Post, C.J.Lockwood & L. L. Simpson (Eds), UpToDate Search in Google Scholar

Ditisheim A, Sibai BM. Diagnosis and Management of HELLP Syndrome Complicated by Liver Hematoma. Clin Obstet Gynecol 2017;60(1):190-197. Search in Google Scholar

Martin JN Jr, Rose CH, Briery CM. Understanding and managing HELLP syndrome: the integral role of aggressive glucocorticoids for mother and child. Am J Obstet Gynecol 2006;195(4):914-34. Search in Google Scholar

Stojanovska V, Zenclussen AC. Innate and Adaptive Immune Responses in HELLP Syndrome. Front Immunol 2020;11:667. Search in Google Scholar

Petca A, Miron BC, Pacu I, et al. HELLP Syndrome-Holistic Insight into Pathophysiology. Medicina (Kaunas) 2022;58(2):326. Search in Google Scholar

Abildgaard U, Heimdal K. Pathogenesis of the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP): a review. Eur J Obstet Gynecol Reprod Biol 2013;166(2):117-23. Search in Google Scholar

Nassiri F, Cusimano MD, Scheithauer BW, et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 2011;31(6):2283-90. Search in Google Scholar

Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006;12(6):642-9. Erratum in: Nat Med 2006;12(7):862. Search in Google Scholar

Alam S, Ahmad S, Zafeer F et al. Role of TGF-B1 in The Pathogenesis of Pre-Eclampsia. Ann. Int. Med. Dent. Res 2017, 3, 1. Search in Google Scholar

Opichka MA, Rappelt MW, Gutterman DD, et al. Vascular Dysfunction in Preeclampsia. Cells 2021;10(11):3055. Search in Google Scholar

van Lieshout LCEW, Koek GH, Spaanderman MA, et al. Placenta derived factors involved in the pathogenesis of the liver in the syndrome of haemolysis, elevated liver enzymes and low platelets (HELLP): A review. Pregnancy Hyper-tens 2019;18:42-48. Search in Google Scholar

Abramovici D, Friedman SA, Mercer BM, et al. Neonatal outcome in severe preeclampsia at 24 to 36 weeks’ gestation: does the HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome matter? Am J Obstet Gynecol 1999;180(1 Pt 1):221-5. Search in Google Scholar

Strand S, Strand D, Seufert R, et al. Placenta-derived CD95 ligand causes liver damage in hemolysis, elevated liver enzymes, and low platelet count syndrome. Gastroenterology 2004;126(3):849-58. Search in Google Scholar

Romaniuk MA, Croci DO, Lapponi MJ, et al. Binding of galectin-1 to αIIbβ₃ integrin triggers “outside-in” signals, stimulates platelet activation, and controls primary hemostasis. FASEB J 2012;26(7):2788-98. Search in Google Scholar

Huang H, Liu B, Gao X, et al. Clinical Classification, Pregnancy Outcomes and Risk Factors Analysis of Severe Preeclampsia Complicated With HELLP Syndrome. Front Surg 2022;9:859180. Search in Google Scholar

Fang CJ, Richards A, Liszewski MK, et al. Advances in understanding of pathogenesis of aHUS and HELLP. Br J Haematol 2008;143(3):336-48. Search in Google Scholar

Salmon JE, Heuser C, Triebwasser M, et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med 2011;8(3):e1001013. Search in Google Scholar

McCormick PA, Higgins M, McCormick CA, et al. Hepatic infarction, hematoma, and rupture in HELLP syndrome: support for a vaso-spastic hypothesis. J Matern Fetal Neonatal Med 2022; 35(25):7942-7947. Search in Google Scholar

Zeng M, Luo Y, Xu C, et al. Platelet-endothelial cell interactions modulate smooth muscle cell phenotype in an in vitro model of type 2 diabetes mellitus. Am J Physiol Cell Physiol 2019;316(2):C186-C197. Search in Google Scholar

Koenig M, Roy M, Baccot S, et al. Thrombotic microangiopathy with liver, gut, and bone infarction (catastrophic antiphospholipid syndrome) associated with HELLP syndrome. Clin Rheumatol 2005;24(2):166-8. Search in Google Scholar

Knight M, Nelson-Piercy C, Kurinczuk JJ, et al. UK Obstetric Surveillance System. A prospective national study of acute fatty liver of pregnancy in the UK. Gut 2008;57(7):951-6. Search in Google Scholar

Nelson DB, Yost NP, Cunningham FG. Acute fatty liver of pregnancy: clinical outcomes and expected duration of recovery. Am J Obstet Gynecol 2013; 209:456.e1. Search in Google Scholar

Lee, R.H., & Reau, N. (2022). Acute fatty liver of pregnancy. In T.W. Post, K.D.Lindor & C.J.Lockwood (Eds),UpToDate Search in Google Scholar

Liu J, Ghaziani TT, Wolf JL. Acute Fatty Liver Disease of Pregnancy: Updates in Pathogenesis, Diagnosis, and Management. Am J Gastroenterol 2017;112(6):838-846. Search in Google Scholar

Santos L, Patterson A, Moreea SM, et al. Acute liver failure in pregnancy associated with maternal MCAD deficiency. J Inherit Metab Dis 2007;30(1):103. Search in Google Scholar

Ibdah JA, Bennett MJ, Rinaldo P, et al. A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 1999; 340:1723. Search in Google Scholar

Browning MF, Levy HL, Wilkins-Haug LE, et al. Fetal fatty acid oxidation defects and maternal liver disease in pregnancy. Obstet Gynecol 2006;107(1):115-20. Search in Google Scholar

Natarajan SK, Ibdah JA. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy. Int J Mol Sci 2018;19(1):322. Search in Google Scholar

Tang W, Huang Z, Wang Y, et al. Effect of plasma exchange on hepatocyte oxidative stress, mitochondria function, and apoptosis in patients with acute fatty liver of pregnancy. Artif Organs 2012;36(3):E39-47. Search in Google Scholar

Naoum EE, Leffert LR, Chitilian HV, et al. Acute Fatty Liver of Pregnancy: Pathophysiology, Anesthetic Implications, and Obstetrical Management. Anesthesiology 2019;130(3):446-461. Search in Google Scholar

Allison MG, Shanholtz CB, Sachdeva A. Hematological Issues in Liver Disease. Crit Care Clin 2016;32(3):385-96. Search in Google Scholar

Minakami H, Morikawa M, Yamada T, et al. Differentiation of acute fatty liver of pregnancy from syndrome of hemolysis, elevated liver enzymes and low platelet counts. J Obstet Gynaecol Res 2014;40(3):641-9. Search in Google Scholar

eISSN:
1857-8985
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Ethik und Geschichte der Medizin, Klinische Medizin, andere, Sozialwissenschaften, Pädagogik