Zitieren

1. Antwi-Boasiako C, Frimpong E, Gyan B, et al. Elevated proangiogenic markers are associated with vascular complications within ghanaian sickle cell disease patients. Medical sciences. 2018; 6.10.3390/medsci6030053616408529954157 Search in Google Scholar

2. Conran N, Almeida CB. Hemolytic vascular inflammation: An update. Revista brasileira de hematologia e hemoterapia. 2016; 38: 55–57.10.1016/j.bjhh.2015.10.004478676426969775 Search in Google Scholar

3. Kato GJ, Hebbel RP, Steinberg MH, et al. Vasculopathy in sickle cell disease: Biology, patho-physiology, genetics, translational medicine, and new research directions. American journal of hematology. 2009; 84: 618–625.10.1002/ajh.21475320971519610078 Search in Google Scholar

4. Usmani A, Machado RF. Vascular complications of sickle cell disease. Clinical hemorheology and microcirculation. 2018;68:205-22110.3233/CH-189008719447529614633 Search in Google Scholar

5. Castro O, Hoque M, Brown BD. Pulmonary hypertension in sickle cell disease: Cardiac catheterization results and survival. Blood. 2003;101:1257-126110.1182/blood-2002-03-094812393669 Search in Google Scholar

6. Heller PG, Grinberg AR, Lencioni M, et al. Pulmonary hypertension in paroxysmal nocturnal hemoglobinuria. Chest. 1992; 102: 642–643.10.1378/chest.102.2.6421643968 Search in Google Scholar

7. Morris CR, Kuypers FA, Kato GJ, et al. Hemolysis-associated pulmonary hypertension in thalassemia. Annals of the New York Academy of Sciences. 2005; 1054: 481–485.10.1196/annals.1345.058321730016339702 Search in Google Scholar

8. Verresen D, De Backer W, Van Meerbeeck J, et al. Spherocytosis and pulmonary hypertension coincidental occurrence or causal relationship? The European respiratory journal. 1991; 4: 629–631. Search in Google Scholar

9. Fonseca GH, Souza R, Salemi VM, et al. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. The European respiratory journal. 2012; 39: 112–118.10.1183/09031936.0013441021778170 Search in Google Scholar

10. Mehari A, Gladwin MT, Tian X, et al. Mortality in adults with sickle cell disease and pulmonary hypertension. Jama. 2012; 307: 1254–1256.10.1001/jama.2012.358351104822453563 Search in Google Scholar

11. Parent F, Bachir D, Inamo J, et al. A hemodynamic study of pulmonary hypertension in sickle cell disease. The New England journal of medicine. 2011; 365: 44–53.10.1056/NEJMoa100556521732836 Search in Google Scholar

12. Derchi G, Galanello R, Bina P, et al. Prevalence and risk factors for pulmonary arterial hypertension in a large group of beta-thalassemia patients using right heart catheterization: A webthal study. Circulation. 2014; 129: 338–345.10.1161/CIRCULATIONAHA.113.00212424081970 Search in Google Scholar

13. Strange G, Playford D, Stewart S, et al. Pulmonary hypertension: Prevalence and mortality in the armadale echocardiography cohort. Heart. 2012; 98: 1805–1811.10.1136/heartjnl-2012-301992353338322760869 Search in Google Scholar

14. Gladwin MT, Sachdev V, Jison ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. The New England journal of medicine. 2004; 350: 886–895.10.1056/NEJMoa03547714985486 Search in Google Scholar

15. Psatha N, Papayanni PG, Yannaki E. A new era for hemoglobinopathies: More than one curative option. Current gene therapy. 2017; 17: 364–378 Search in Google Scholar

16. Hsu LL, Champion HC, Campbell-Lee SA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. 2007;109:3088-309810.1182/blood-2006-08-039438185222417158223 Search in Google Scholar

17. Brittain EL, Janz DR, Austin ED et al. Elevation of plasma cell–free hemoglobin in pulmonary arterial hypertension. Chest. 2014; 146: 1478–1485.10.1378/chest.14-0809425161224945582 Search in Google Scholar

18. Taylor JGt, Nolan VG, Mendelsohn L, et al. Chronic hyper-hemolysis in sickle cell anemia: Association of vascular complications and mortality with less frequent vasoocclusive pain. PloS one. 2008; 3: e2095.10.1371/journal.pone.0002095233007018461136 Search in Google Scholar

19. Reiter CD, Wang X, Tanus-Santos JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nature medicine. 2002; 8: 1383–1389.10.1038/nm1202-79912426562 Search in Google Scholar

20. Morris CR, Kato GJ, Poljakovic M, et al. Dys-regulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. Jama. 2005; 294: 81–90.10.1001/jama.294.1.81206586115998894 Search in Google Scholar

21. James J, Srivastava A, Varghese MV, et al. Heme induces rapid endothelial barrier dysfunction via the mkk3/p38mapk axis. Blood. 2020;136:749-75410.1182/blood.2019003986741458932548640 Search in Google Scholar

22. Geiger JD PR, Nagy JI. Adenosine deaminase regulation of purine actions. In Adenosine and Adenine Nucleotides as Regulators of Cellular Function. Edited by Phillis JW, Coca Raton FL, CRC Press 1991: 71–84. Search in Google Scholar

23. Sharff AJ, Wilson DK, Chang Z, et al. Refined 2.5 a structure of murine adenosine deaminase at ph 6.0. Journal of molecular biology. 1992; 226: 917–921.10.1016/0022-2836(92)91040-V Search in Google Scholar

24. Tofovic SP, Jackson EK, Rafikova O. Adenosine deaminase-adenosine pathway in hemolysis-associated pulmonary hypertension. Medical hypotheses. 2009; 72: 713–719.10.1016/j.mehy.2008.12.04319237250 Search in Google Scholar

25. Tofovic SP, Kusaka H, Li P, et al. Effects of adenosine deaminase inhibition on blood pressure in old spontaneously hypertensive rats. Clinical and experimental hypertension. 1998;20:329-34410.3109/106419698090521259605386 Search in Google Scholar

26. Jackson EK, Koehler M, Mi Z, et al. Possible role of adenosine deaminase in vaso-occlusive diseases. Journal of hypertension. 1996;14:19-2910.1097/00004872-199601000-00003 Search in Google Scholar

27. Jackson EK, Mi Z, Koehler MT, et al. Injured erythrocytes release adenosine deaminase into the circulation. The Journal of pharmacology and experimental therapeutics. 1996; 279: 1250–1260. Search in Google Scholar

28. Bilan VP, Schneider F, Novelli EM, et al. Experimental intravascular hemolysis induces hemodynamic and pathological pulmonary hypertension: Association with accelerated purine metabolism. Pulmonary circulation. 2018;8:2045894018791557.10.1177/2045894018791557608008430003836 Search in Google Scholar

29. Santos NC, Figueira-Coelho J, Martins-Silva J, et al. Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochemical pharmacology. 2003; 65: 1035–1041.10.1016/S0006-2952(03)00002-9 Search in Google Scholar

30. DiStefano V, Klahn JJ. Observations on the pharmacology and hemolytic activity of dimethyl sulfoxide. Toxicology and applied pharmacology. 1965; 7: 660–666.10.1016/0041-008X(65)90122-55866804 Search in Google Scholar

31. Yi X, Liu M, Luo Q, et al. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS open bio. 2017; 7: 485–494.10.1002/2211-5463.12193537739628396834 Search in Google Scholar

32. Norred WP, Ansel HC, Roth IL, et al. Mechanism of dimethyl sulfoxide-induced hemolysis. Journal of pharmaceutical sciences. 1970; 59: 618–622.10.1002/jps.26005905095446416 Search in Google Scholar

33. Tofovic SP, Salah EM, Mady HH, et al. Estradiol metabolites attenuate monocrotaline-induced pulmonary hypertension in rats. Journal of cardiovascular pharmacology. 2005; 46: 430–437.10.1097/01.fjc.0000175878.32920.1716160593 Search in Google Scholar

34. Ren J, Mi Z, Jackson EK. Assessment of nerve stimulation-induced release of purines from mouse kidneys by tandem mass spectrometry. The Journal of pharmacology and experimental therapeutics. 2008; 325 :920–926.10.1124/jpet.108.13775218322147 Search in Google Scholar

35. MacArthur PH, Shiva S, Gladwin MT. Measurement of circulating nitrite and s-nitrosothiols by reductive chemiluminescence. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2007; 851: 93–105.10.1016/j.jchromb.2006.12.01217208057 Search in Google Scholar

36. Yang BK, Vivas EX, Reiter CD, et al. Methodologies for the sensitive and specific measurement of s-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free radical research. 2003; 37: 1–10.10.1080/107157602100003311212653211 Search in Google Scholar

37. Morris SM, Jr., Kepka-Lenhart D, Chen LC. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. The American journal of physiology. 1998;275:E740-74710.1152/ajpendo.1998.275.5.E7409814991 Search in Google Scholar

38. Ghosh S, Adisa OA, Chappa P, et al. Extracellular hemin crisis triggers acute chest syndrome in sickle mice. The Journal of clinical investigation. 2013; 123: 4809–4820.10.1172/JCI64578380977224084741 Search in Google Scholar

39. Wallace KL, Marshall MA, Ramos SI, et al. Nkt cells mediate pulmonary inflammation and dys-function in murine sickle cell disease through production of ifn-gamma and cxcr3 chemokines. Blood. 2009; 114: 667–676.10.1182/blood-2009-02-205492271346719433855 Search in Google Scholar

40. Kim R, Liu W, Chen X, et al. Intravesical dimethyl sulfoxide inhibits acute and chronic bladder inflammation in transgenic experimental autoimmune cystitis models. Journal of biomedicine & biotechnology. 2011; 2011: 937061.10.1155/2011/937061298938321113298 Search in Google Scholar

41. Perez-Marrero R, Emerson LE, Feltis JT. A controlled study of dimethyl sulfoxide in interstitial cystitis. The Journal of urology. 1988;140:36-3910.1016/S0022-5347(17)41478-93288775 Search in Google Scholar

42. Tutolo M, Ammirati E, Castagna G, et al. A prospective randomized controlled multicentre trial comparing intravesical dmso and chondroitin sulphate 2% for painful bladder syndrome/interstitial cystitis. International braz j urol : official journal of the Brazilian Society of Urology. 2017; 43: 134–141.10.1590/s1677-5538.ibju.2016.0302 Search in Google Scholar

43. Dasgupta T, Hebbel RP, Kaul DK. Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free radical biology & medicine. 2006; 41: 1771–1780.10.1016/j.freeradbiomed.2006.08.025194897717157180 Search in Google Scholar

44. Morris CR, Morris SM, Jr., Hagar W, et al. Arginine therapy: A new treatment for pulmonary hypertension in sickle cell disease? American journal of respiratory and critical care medicine. 2003; 168: 63–69. Search in Google Scholar

45. Spector EB, Rice SC, Kern RM, et al. Comparison of arginase activity in red blood cells of lower mammals, primates, and man: Evolution to high activity in primates. American journal of human genetics. 1985; 37: 1138–1145. Search in Google Scholar

46. Tofovic SP BV, Gladwin M, Schneider F. Repetitive hemolysis induces severe angiopproloferative pulmonary hypertension in rats. 2012;. Am J Respir Crit Care Med. 2012; 185: A1247.10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A1247 Search in Google Scholar

47. Tofovic SP EA, Jackson EK, Morris SM, Jr. 2-methoxyestradiol attenuates arginase induction and vascular remodeling in pulmonary hypertensive rats.. Proceed Am Thor Soc.. 2006;3 A856 Search in Google Scholar

48. Tofovic SP BV. Two rat models of hemolysis-induced pulmonary hypertension.. Eur Res J. 2010; 36: P107. Search in Google Scholar

49. Khoury J, Ibla JC, Neish AS, et al. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. The Journal of clinical investigation. 2007;117:703-71110.1172/JCI30049179760417318263 Search in Google Scholar

50. Xu MH, Gong YS, Su MS, et al. Absence of the adenosine a2a receptor confers pulmonary arterial hypertension and increased pulmonary vascular remodeling in mice. Journal of vascular research. 2011; 48: 171–183.10.1159/000316935297573620938208 Search in Google Scholar

51. Wallace KL, Linden J. Adenosine a2a receptors induced on inkt and nk cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood. 2010; 116: 5010–5020.10.1182/blood-2010-06-290643301259420798237 Search in Google Scholar

52. Eltzschig HK, Ibla JC, Furuta GT, et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: Role of ectonucleotidases and adenosine a2b receptors. The Journal of experimental medicine. 2003; 198: 783–796.10.1084/jem.20030891219418912939345 Search in Google Scholar

53. Thompson LF, Eltzschig HK, Ibla JC, et al. Crucial role for ecto-5’-nucleotidase (cd73) in vascular leakage during hypoxia. The Journal of experimental medicine. 2004; 200: 1395–140510.1084/jem.20040915123701215583013 Search in Google Scholar

54. Saadjian AY, Paganelli F, Gaubert ML, et al. Adenosine plasma concentration in pulmonary hypertension. Cardiovascular research. 1999; 43: 228–236.10.1016/S0008-6363(99)00059-010536708 Search in Google Scholar

55. Saadjian AY, Paganelli F, Juin MA, et al. Plasma beta-endorphin and adenosine concentration in pulmonary hypertension. The American journal of cardiology. 2000; 85: 858–863.10.1016/S0002-9149(99)00881-410758927 Search in Google Scholar

56. Fullerton DA, Jaggers J, Jones SD, et al. Adenosine for refractory pulmonary hypertension. The Annals of thoracic surgery. 1996; 62: 874–877.10.1016/S0003-4975(96)00361-X Search in Google Scholar

57. Fullerton DA, Jones SD, Grover FL, et al. Adenosine effectively controls pulmonary hypertension after cardiac operations. The Annals of thoracic surgery. 1996; 61: 1118–1123; discussion 1123–1114.10.1016/0003-4975(95)01149-88607668 Search in Google Scholar

58. Motti A, Tissot C, Rimensberger PC, et al. Intravenous adenosine for refractory pulmonary hypertension in a low-weight premature newborn: A potential new drug for rescue therapy. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2006; 7: 380–382.10.1097/01.PCC.0000225000.78627.EB16738499 Search in Google Scholar

59. Ng C, Franklin O, Vaidya M, et al. Adenosine infusion for the management of persistent pulmonary hypertension of the newborn. Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2004; 5: 10–13.10.1097/01.CCM.0000105309.27519.2714697102 Search in Google Scholar

60. Canpolat F, Unver M, Eskioglu F, et al. Serum and erythrocyte adenosine deaminase activities in patients with behcet’s disease. International journal of dermatology. 2006; 45: 1053–1056.10.1111/j.1365-4632.2006.02892.x16961545 Search in Google Scholar

61. Erkilic K, Evereklioglu C, Cekmen M, et al. Adenosine deaminase enzyme activity is increased and negatively correlates with catalase, super-oxide dismutase and glutathione peroxidase in patients with behcet’s disease: Original contributions/clinical and laboratory investigations. Mediators of inflammation. 2003; 12: 107–116.10.1080/0962935031000097754178159812775361 Search in Google Scholar

62. Cowan MJ, Brady RO, Widder KJ. Elevated erythrocyte adenosine deaminase activity in patients with acquired immunodeficiency syndrome. Proceedings of the National Academy of Sciences of the United States of America. 1986; 83: 1089–1091.10.1073/pnas.83.4.10893230163006027 Search in Google Scholar

63. Khodadadi I, Abdi M, Ahmadi A, et al. Analysis of serum adenosine deaminase (ada) and ada1 and ada2 isoenzyme activities in hiv positive and hiv-hbv co-infected patients. Clinical biochemistry. 2011; 44: 980–983.10.1016/j.clinbiochem.2011.05.02021640091 Search in Google Scholar

eISSN:
1857-8985
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Ethik und Geschichte der Medizin, Klinische Medizin, andere, Sozialwissenschaften, Pädagogik