Zitieren

1. Abecassis M, Bartlett ST, Collins AJ, et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clinical journal of the American Society of Nephrology: CJASN. 2008; 3: 471–480.10.2215/CJN.05021107239094818256371Search in Google Scholar

2. Coemans M, Süsal C, Döhler B, Anglicheau D, Giral M, Bestard O, Legendre C, Emonds MP, Kuypers D, Molenberghs G, Verbeke G, Naesens M (2018). Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney Int. 94: 964–973.Search in Google Scholar

3. Bertram L. Kasiske. Proteinuria and Other Urinary Biomarkers in Kidney Transplantation: Why Are We Still Waiting for Godot?2011 Am.J Kidney Dis2011; 57 (5): 654–656.10.1053/j.ajkd.2011.01.00221496726Search in Google Scholar

4. Roodnat J.I.Mulder P.G. Rischen-Vos J.et al. Proteinuria after renal transplantation affects not only graft survival but also patient survival. Transplantation. 2001; 72: 438–444.10.1097/00007890-200108150-0001411502973Search in Google Scholar

5. Jean-Michel Halimi Inass Laouad Matthias Buchler Azmi Al-Najjar Valérie Chatelet Tarik Sqalli Houssaini Hubert Nivet Yvon Lebranchu. Early Low-Grade Proteinuria: Causes, Short-Term Evolution and Long-Term Consequences in Renal Transplantation. Am J Transplant. 2005; 5: 2281–2288.10.1111/j.1600-6143.2005.01020.x16095510Search in Google Scholar

6. Paul A. Devine, Aisling E. Courtney & Alexander P. Maxwell Cardiovascular risk in renal transplant recipients. Journal of Nephrology 2019; 32, 389–399.10.1007/s40620-018-0549-4648229230406606Search in Google Scholar

7. Robert B. Colvin, The renal allograft biopsy, Kidney International.1996;50 (3):1069–1082.Search in Google Scholar

8. Lees JS, McQuarrie EP, Mordi N, Geddes CC, Fox JG, Mackinnon B. Risk factors for bleeding complications after nephrologist-performed native renal biopsy. Clin Kidney J. 2017; (10)4: 573–577.10.1093/ckj/sfx012557008028852497Search in Google Scholar

9. TrajceskaL, Severova-Andreevska G, Dzekova-Vidimliski P, Nikolov I, Selim G, Spasovski G, Rambabova-Busletik I, Ristovska V, Grcevska L, Sikole A.Complications and Risks of Percutaneous Renal Biopsy. Open Access Maced J Med Sci. 2019; 7(6): 992–995.10.3889/oamjms.2019.226645417230976347Search in Google Scholar

10. Biomarkers Definitions Working Group.Bio-markers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001; 69(3): 89–95.10.1067/mcp.2001.11398911240971Search in Google Scholar

11. Anderson, N.L.; Anderson, N.G. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 1998, 19, 1853–1861.Search in Google Scholar

12. Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA, Jankowski J, Mischak H. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol. 2007; 18(4): 1057–1071.10.1681/ASN.200609095617329573Search in Google Scholar

13. Hortin GL, Sviridov D. Diagnostic potential for urinary proteomics. Pharmacogenomics. 2007; 8: 237–255.10.2217/14622416.8.3.23717324112Search in Google Scholar

14. Thongboonkerd V, Malasit P. Renal and urinary proteomics: current applications and challenges. Proteomics 2005; 5: 1033–1042.10.1002/pmic.20040101215669002Search in Google Scholar

15. Mischak H. Pro: Urine proteomics as a liquid kidney biopsy: no more kidney punctures! Nephrol Dial Transplant (2015) 30: 532–537.10.1093/ndt/gfv04625801638Search in Google Scholar

16. Cassidy H, Slyne J, Frain H, Slattery C, Ryan MP, McMorrow T. High-Throughput Proteomic Approaches to the Elucidation of Potential Biomarkers of Chronic Allograft Injury (CAI). Proteomes. 2013; 1(2): 159–179.10.3390/proteomes1020159530274328250402Search in Google Scholar

17. Monteoliva, L.; Albar, J.P. Differential proteomics: An overview of gel and non-gel based approaches. Brief. Funct. Genomic Proteomic 2004;3(3): 220–239.Search in Google Scholar

18. Quintana LF, Sole-Gonzalez A, Kalko SG, et al. Urine proteomics to detect biomarkers for chronic allograft dysfunction. J Am Soc Nephrol. 2009; 20(2): 428-435. doi:10.1681/ASN.2007101137.10.1681/ASN.2007101137263704719056874Search in Google Scholar

19. Zand MS. Immunosuppression and immune monitoring after renal transplantation. Semin Dial. 2005; 18(6): 511–519.10.1111/j.1525-139X.2005.00098.x16398715Search in Google Scholar

20. Pallardó Mateu LM, Sancho Calabuig A, Capdevila Plaza L, Franco Esteve A. Acute rejection and late renal transplant failure: risk factors and prognosis. Nephrol Dial Transplant. 2004; Suppl 3:iii38–42.10.1093/ndt/gfh101315192134Search in Google Scholar

21. Santos AH Jr, Casey MJ, Womer KL. Analysis of Risk Factors for Kidney Retransplant Outcomes Associated with Common Induction Regimens: A Study of over Twelve-Thousand Cases in the United States. J Transplant. 2017; 2017: 8132672.Search in Google Scholar

22. Wehmeier C, Hönger G, Cun H, Amico P, Hirt-Minkowski P, Georgalis A, Hopfer H, Dickenmann M, Steiger J, Schaub S. Donor Specificity but Not Broadness of Sensitization Is Associated With Antibody-Mediated Rejection and Graft Loss in Renal Allograft Recipients. Am J Transplant. 2017; 17(8): 2092–2102.10.1111/ajt.1424728245084Search in Google Scholar

23. Jeong HJ. Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res Clin Pract. 2020; 39(1): 17–3110.23876/j.krcp.20.003710563032164120Search in Google Scholar

24. Kim SC, Page EK, Knechtle SJ. Urine proteomics in kidney transplantation. Transplant Rev (Orlando). 2014; 28(1): 15–20.10.1016/j.trre.2013.10.00424321302Search in Google Scholar

25. Hricik DE, Nickerson P, Formica RN, et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant. 2013; 13(10): 2634–2644.10.1111/ajt.12426395978623968332Search in Google Scholar

26. Sigdel TK, Gao Y, He J, et al. Mining the human urine proteome for monitoring renal transplant injury. Kidney Int. 2016; 89(6): 1244–1252.10.1016/j.kint.2015.12.049Search in Google Scholar

27. Mertens I, Willems H, Van Loon E, et al. Urinary Protein Biomarker Panel for the Diagnosis of Antibody-Mediated Rejection in Kidney Transplant Recipients. Kidney Int Rep. 2020; 5(9): 1448–1458.10.1016/j.ekir.2020.06.018Search in Google Scholar

28. Li C, Yang CW. The pathogenesis and treatment of chronic allograft nephropathy. Nat Rev Nephrol. 2009; 5(9): 513–519.10.1038/nrneph.2009.113Search in Google Scholar

29. Brian J. Nankivell, in Kidney Transplantation (Sixth Edition), 2008Search in Google Scholar

30. Argilés Á, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, Osaba L, Delles C, Mourad G, Weinberger KM, Mischak H. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013 May 14; 8(5): e62837.10.1371/journal.pone.0062837Search in Google Scholar

31. Schanstra JP, Zürbig P, Alkhalaf A, Argiles A, Bakker SJ, Beige J, Bilo HJ, Chatzikyrkou C, Dakna M, Dawson J, Delles C, Haller H, Haubitz M, Husi H, Jankowski J, Jerums G, Kleefstra N, Kuznetsova T, Maahs DM, Menne J, Mullen W, Ortiz A, Persson F, Rossing P, Ruggenenti P, Rychlik I, Serra AL, Siwy J, Snell-Bergeon J, Spasovski G, Staessen JA, Vlahou A, Mischak H, Vanholder R. Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides. J Am Soc Nephrol. 2015; 26(8): 1999–2010.10.1681/ASN.2014050423Search in Google Scholar

32. Tofte N, Lindhardt M, Adamova K, Bakker SJL, Beige J, Beulens JWJ, et al. PRIORITY investigators. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020; 8(4): 301–312.10.1016/S2213-8587(20)30026-7Search in Google Scholar

33. Rambabova-Bushljetik I, Metzger J, Siwy J, Dohcev S, Bushljetikj O, Filipce V, Trajceska L, Mischak H, Spasovski G. Association of the chronic kidney disease urinary proteomic predictor CKD273 with clinical risk factors of graft failure in kidney allograft recipients.Nephrol Dial Transplant. 2021 Oct 11:gfab297. doi: 10.1093/ ndt/gfab297. Online ahead of print.10.1093/ndt/gfab29734634117Search in Google Scholar

34. Amr K. Hussien, Pacint E. Moez, Hala S. Elwakil & Hayam A. Elagaan (2020) Identification of urinary proteomic profile of patients with chronic allograft nephropathy, Alexandria Journal of Medicine, 56:1, 93–104.10.1080/20905068.2020.1749782Search in Google Scholar

35. O'Riordan E, Orlova TN, Mendelev N, Patschan D, Kemp R, Chander PN, Hu R, Hao G, Gross SS, Iozzo RV, Delaney V, Goligorsky MS. Urinary proteomic analysis of chronic allograft nephropathy. Proteomics Clin Appl. 2008 Jul; 2(7–8): 1025–35.10.1002/prca.200780137469047321136903Search in Google Scholar

36. Cassidy H, Slyne J, O'Kelly P, Traynor C, Conlon PJ, Johnston O, Slattery C, Ryan MP, McMorrow T. Urinary biomarkers of chronic allograft nephropathy. Proteomics Clin Appl. 2015; 9(5-6): 574–85.10.1002/prca.20140020025951805Search in Google Scholar

37. Tetaz R, Trocmé C, Roustit M, Pinel N, Bayle F, Toussaint B, Zaoui P. Predictive diagnostic of chronic allograft dysfunction using urinary proteomics analysis. Ann Transplant. 2012; 17(3): 52–60.10.12659/AOT.883458Search in Google Scholar

38. Issa N, Kukla A, Ibrahim H, N: Calcineurin Inhibitor Nephrotoxicity: A Review and Perspective of the Evidence. Am J Nephrol 2013; 37: 602–612.10.1159/00035164823796509Search in Google Scholar

39. Carreras-Planella L, Juega J, Taco O, et al. Proteomic Characterization of Urinary Extracellular Vesicles from Kidney-Transplanted Patients Treated with Calcineurin Inhibitors. Int J Mol Sci. 2020; 21(20): 7569.10.3390/ijms21207569758946033066346Search in Google Scholar

40. Gustafsson F, Gude E, Sigurdardottir V, Aukrust P, Solbu D, Goetze JP, et al. Plasma NGAL and glomerular filtration rate in cardiac transplant recipients treated with standard or reduced calcineurin inhibitor levels. Biomark Med. 2014; 8: 239–245.10.2217/bmm.13.9524521021Search in Google Scholar

41. Yadav B, Prasad N, Agrawal V, Jaiswal A, Rai M, Sharma R, et al. Urinary Kidney injury molecule-1 can predict delayed graft function in living donor renal allograft recipients. Nephrology. 2015; 20: 801–806.10.1111/nep.1251125989460Search in Google Scholar

42. Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol. 2006; 21: 856–863.10.1007/s00467-006-0055-016528543Search in Google Scholar

43. Mannon RB. Acute Kidney Injury in Kidney Transplants: New Insights. Nephron. 2019; 143(3): 193–196.10.1159/00050055031096218Search in Google Scholar

44. Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant. 2006l; 6(7): 1639–1645.10.1111/j.1600-6143.2006.01352.x16827865Search in Google Scholar

45. Schaub S, Mayr M, Hönger G, Bestland J, Steiger J, Regeniter A, Mihatsch MJ, Wilkins JA, Rush D, Nickerson P: Detection of subclinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathology. Transplantation 2007; 84: 104–112.10.1097/01.tp.0000268808.39401.e817627245Search in Google Scholar

46. Suhail SM. Significance of urinary proteome pattern in renal allograft recipients. J Transplant. 2014; 2014: 139361.10.1155/2014/139361397685424757556Search in Google Scholar

47. Mohamed N, Avila-Casado C. Transplant Glomerulopathy: Pathogenesis, Morphology, and Prognosis. J Transplant Technol Res. 2011, S: 1.10.4172/2161-0991.S1-003Search in Google Scholar

48. 47. Hanf W, Bonder CS, Coates PT. Transplant glomerulopathy: the interaction of HLA antibodies and endothelium. J Immunol Res. 2014; 2014: 549315.Search in Google Scholar

49. Kanzelmeyer NK, Zürbig P, Mischak H, Metzger J, Fichtner A, Ruszai KH, Seemann T, Hansen M, Wygoda S, Krupka K, Tönshoff B, Melk A, Pape L. Urinary proteomics to diagnose chronic active antibody-mediated rejection in pediatric kidney transplantation – a pilot study. Transpl Int. 2019; 32(1): 28–37.10.1111/tri.1336330357927Search in Google Scholar

50. Jung HY, Lee CH, Choi JY, et al. Potential urinary extracellular vesicle protein biomarkers of chronic active antibody-mediated rejection in kidney transplant recipients. Journal of chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 2020; 1138: 121958.10.1016/j.jchromb.2019.12195831918306Search in Google Scholar

51. Funahashi Y. BK Virus-Associated Nephropathy after Renal Transplantation. Pathogens. 2021; 10(2): 150.10.3390/pathogens10020150791309933540802Search in Google Scholar

52. Hirsch HH, Knowles W, Dickenmann M, Passweg J, Klimkait T, Mihatsch MJ, et al. Prospective study of polyomavirus type BK replication and nephropathy in renal-transplant recipients. N Engl J Med. 2002; 347(7): 488–496.10.1056/NEJMoa02043912181403Search in Google Scholar

53. Jahnukainen T, Malehorn D, Sun M, Lyons-Weiler J, Bigbee W, Gupta G, et al. Proteomic analysis of urine in kidney transplant patients with BK virus nephropathy. J Am Soc Nephrol. 2006; 17(11): 3248–3256.10.1681/ASN.200605043717035609Search in Google Scholar

54. Konietzny R, Fischer R, Ternette N, et al. Detection of BK virus in urine from renal transplant subjects by mass spectrometry. Clin Proteomics. 2012; 9(1): 4.10.1186/1559-0275-9-4346076022537312Search in Google Scholar

eISSN:
1857-8985
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Ethik und Geschichte der Medizin, Klinische Medizin, andere, Sozialwissenschaften, Pädagogik