[1. WHO Statistics. http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed 21 December 2017).]Search in Google Scholar
[2. Salomon B, Varella-Garcia M and Camidge DR. ALK gene rearrangements a new therapeutic target in a molecularly defined subset of non-smal cell lung cancer. J Thorac Oncol 2009; 4: 1450–1454.10.1097/JTO.0b013e3181c4dedb20009909]Search in Google Scholar
[3. Soda M. Choi YL, Enomoto M. et al. Identification of the transforming EML4-ALK fusion gene in NSCLC. Nature 2007; 448: 561–566.10.1038/nature0594517625570]Search in Google Scholar
[4. Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies ocogenic kinases in lung cancer. Cell 2007; 131: 1190–1203.10.1016/j.cell.2007.11.02518083107]Search in Google Scholar
[5. Kris M, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014; 311: 1998–2006.10.1001/jama.2014.3741416305324846037]Search in Google Scholar
[6. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with NSCLC who harbor EMLA-4-ALK. J Clin Oncol 2009; 27: 4247–4253.10.1200/JCO.2009.22.6993274426819667264]Search in Google Scholar
[7. Kwak EL, Bang YJ, Camidge DR, et al. Anaplstic lymphoma kinase inhibition in NSCLC. N Engl J Med 2010; 363: 1693–1703.10.1056/NEJMoa1006448301429120979469]Search in Google Scholar
[8. Passaro K, Lazzari C, Karachaliou N et al. Personalized treatment in advanced ALK-positive NSCLC; from bench to clinical practice. Onco Targets Ther.2016; 9: 6361–6376.10.2147/OTT.S98347507470327799783]Search in Google Scholar
[9. Costa DR, Kobayashi S, Pandya SS, et al. CSF concentration of anplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol 2011; 29: c443-c445.10.1200/JCO.2010.34.131321422405]Search in Google Scholar
[10. Mok T, Camidge D. R., Gadgeel S. M.et al. Updated overall survival and final progression-free survival data for patients with treatment-naïve advanced ALK-positive non-small-cell lung cancer in the Annals of Oncology ALEX study 2020 doi: https://doi.org/10.1016/j.annonc.2020.]Search in Google Scholar
[11. Metro G, Lunardi G, Floridi P, et al. CSF concentration of crizotinib in two ALK-positive NSCLC patients with CNS metastases deriving clinical benefit from treatment. J Thorac Oncol 2015;10:c26-c27.10.1097/JTO.000000000000046825898960]Search in Google Scholar
[12. Ricciuti B, De Gioglio A, Mecca c, et al. Precision medicine against ALK positive NSCLC: beyond crizotinib. Med Oncol 2018; 35: 72.10.1007/s12032-018-1133-429666949]Search in Google Scholar
[13. Rossi A, Alectinib for ALK-positive NSCLC. Exp Rev Clin Pharmacol 2016; 9: 1005–1013.]Search in Google Scholar
[14. Vavalia T, Novello S. Alectinib in the treatment of ALK-positive non-small cell lung cancer: an update on its properties, efficacy, safety and place in therapy. Ther Adv Med Oncol 2018, Vol. 10: 1–12.10.1177/1758835918789364]Search in Google Scholar
[15. Kodama T, Hasegawa M, Takanashi K, et al. Antitumor activity of selective ALK inhibitor alec-tinib in models of intracraneal metástasis. Cáncer Chemother Pharmacol 2014; 74: 1023–1028.10.1007/s00280-014-2578-6]Search in Google Scholar
[16. Katayama R, Sakashhita T, Yanagitani N, et al. P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged NSCLC. Bio Medicine 2016; 3: 54–66.]Search in Google Scholar
[17. Novello S, Mazieres J, oh IJ, et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive NSCLC: results from the phase III ALUR study. Ann Oncol 2018; 29: 1409–1416.10.1093/annonc/mdy121]Search in Google Scholar
[18. Metro G, Lunardi G, Bennati C, et al Alectinib’s activity against CNS metastases from ALK-positive NSCLC a single institution case series. J Neuro Oncol 2016; 129: 355–361.10.1007/s11060-016-2184-z]Search in Google Scholar
[19. Gainor JF, Sherman CA, Willoughby K, et al. Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crisotinib and ceritinib. J Thorac Oncol 2015; 10: 232–236.10.1097/JTO.0000000000000455]Search in Google Scholar
[20. Ou SH, Klempner SJ, Azada MC, et al. Radiation necrosis presenting as pseudoprogression (PsP) during alectinib treatment of previously radiated brain metastases in ALK-positive NSCLC implications for disease assessment and management Lung cancer 2015; 88: 355–359.]Search in Google Scholar
[21. Norsdal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption Int J Radiat Oncol Biol Phs 2005; 52: 279–287.]Search in Google Scholar
[22. Qin DX, Zheng R, Tang J et al Influence of radiation on the blood-brain barrier permeability changes and optimum time of chemotherapy. Int J Radiat Oncol Biol Phs 1990; 19: 1507–1510.10.1016/0360-3016(90)90364-P]Search in Google Scholar
[23. Khalifa J, Amini A, Popat S et al Brain metastases from NSCLC: radiation therapy in the era of targeted therapies Jour of Thorac Oncol 2016; 10: 1627–1643.10.1016/j.jtho.2016.06.00227343440]Search in Google Scholar
[24. Tran PN and Klempner SJ. Focus on alectinib and competitor compounds for second line therapy in ALK-rearranged NSCLC. Front Med (Lausanne) 2016; 3: 65.10.3389/fmed.2016.00065512785127965961]Search in Google Scholar
[25. Gadgeel SM, Shaw AT, Barlesi f, et al. Cumulative incidence rates for CNS and non CNS progression in two phase II studies of alectinib in ALK-positive NSCLC Br J Cancer 2018; 118: 38–42.]Search in Google Scholar
[26. Chuang YC, Huang BY, Chang HW, Yang CN. Molecular modeling of ALK L1198F and/or G1202R mutations to determine differential crizotinib sensitivity. Sci Rep. 2019; 9: 11390.10.1038/s41598-019-46825-1668480131388026]Search in Google Scholar
[27. Camidge DR, Dziadziuszko R, Peters S, et al. Updated efficacy and safety data and impact of EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK positive advanced non–small cell lung cancer in the global phase III ALEX study. J Thorac Oncol. 2019; 14: 1233–1243.10.1016/j.jtho.2019.03.00730902613]Search in Google Scholar
[28. Dagogo-Jack I, Rooney M, Lin JJ, et al. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin Cancer Res. 2019; 25: 6662–6670.10.1158/1078-0432.CCR-19-1436685895631358542]Search in Google Scholar
[29. Shaw AT, Solomon BJ, Besse B, et al. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non–small-cell lung cancer. J Clin Oncol. 2019; 37: 1370–1379.10.1200/JCO.18.02236654446030892989]Search in Google Scholar