Zitieren

1. Memedi R, Tasic V, Nikolic E, Jancevska A, Gucev Z. Obesity in childhood and adolescence, genetic factors. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2013;34(2):85-89.Search in Google Scholar

2. Wang Y, Lobstein T. Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes. 2006;1(1):11-25.10.1080/17477160600586747Search in Google Scholar

3. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: publichealth crisis, common sense cure. Lancet. 2002;360(9331):473–482.10.1016/S0140-6736(02)09678-2Search in Google Scholar

4. Krstevska-Konstantinova M, Jancevska A, Kocova M, Gucev Z. Weight, height and puberty in a cohort of Macedonian girls. Med Arh. 2009;63(2):80-1.Search in Google Scholar

5. Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003–2006. JAMA. 2008;299(20):2401-2405.10.1001/jama.299.20.2401Search in Google Scholar

6. Kipping RR, Jago R, Lawlor DA. Obesity in children. Part 1: epidemiology, measurement, risk factors, and screening. BMJ. 2008;337:a1824.10.1136/bmj.a1824Search in Google Scholar

7. Sundblom E, Petzold M, Rasmussen F, Callmer E, Lissner L. Childhood overweight and obesity prevalences levelling off in Stockholm but socioeconomic diff erences persist. Int J Obes (Lond). 2008;32(10):1525-1530.10.1038/ijo.2008.104Search in Google Scholar

8. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240-1243.10.1136/bmj.320.7244.1240Search in Google Scholar

9. Troiano RP, Flegal KM, Kuczmarski RJ, Campbell SM, Johnson CL. Overweight prevalence and trends for children and adolescents. The national health and nutrition examination surveys, 1963 to 1991. Arch Pediatr Adolesc Med. 1995;149(10):1085-1091.10.1001/archpedi.1995.02170230039005Search in Google Scholar

10. Neovius MG, Linne YM, Barkeling BS, Rossner SO. Sensitivity and specificity of classification systems for fatness in adolescents. Am J Clin Nutr. 2004;80(3):597-603.10.1093/ajcn/80.3.597Search in Google Scholar

11. Unger RH. The hyperleptinemia of obesity regulator of caloric surpluses. Cell. 2004;117(2):145-146.10.1016/S0092-8674(04)00339-3Search in Google Scholar

12. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903-1103.10.1038/431859202122Search in Google Scholar

13. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T-cell hyporesponsivness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093-1103.10.1172/JCI0215693Search in Google Scholar

14. Waalen, J. The genetics of human obesity. Transl Res. 2014;164(4):293-301.10.1016/j.trsl.2014.05.01024929207Search in Google Scholar

15. Cassidy SB, Driscoll DJ. Prader-Willi syndrome. Eur J Hum Genet. 2009;17(1):3-13.10.1038/ejhg.2008.165298596618781185Open DOISearch in Google Scholar

16. Butler, MG. Prader-Willi syndrome: obesity due to genomic imprinting. Curr Genomics. 2011;12(3):204-215.10.2174/138920211795677877313700522043168Open DOISearch in Google Scholar

17. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38:1249-1263.10.1007/s40618-015-0312-9463025526062517Search in Google Scholar

18. Sahoo T, Gaudio D, German JR, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40(6):719-721.10.1038/ng.158270519718500341Search in Google Scholar

19. Jong MT, Carey AH, Caldwell KA, et al. Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet. 1999;8(5):795-803.10.1093/hmg/8.5.79510196368Open DOISearch in Google Scholar

20. Boccaccio I, Glatt-Deeley H, Watrin F, Roeckel N, Lalande M, Muscatelli F. The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet. 1999;8(13):2497-2505.10.1093/hmg/8.13.249710556298Search in Google Scholar

21. MacDonald HR, Wevrick R. The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet. 1997;6(11):1873-1878.10.1093/hmg/6.11.18739302265Open DOISearch in Google Scholar

22. Farber C, Gross S, Neesen J. Buiting K. Horsthemke B. Identification of a testis-specific gene (C15orf2) in the Prader-Willi syndrome region on chromosome 15. Genomics. 2000;65(2):174-183.10.1006/geno.2000.615810783265Open DOISearch in Google Scholar

23. Griggs J, Sinnayah P, Mathai, ML. Prader-Willi syndrome: from genetics to behaviour, with special focus on appetite treatments. Neurosci Biobehav Rev. 2015;59:155-172.10.1016/j.neubiorev.2015.10.00326475993Search in Google Scholar

24. M’Hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of Bardet-Biedl syndrome. Mol Syndromol. 2014;5(2):51-56.10.1159/000357054397722324715851Search in Google Scholar

25. Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet. 2013;21(1):8–1310.1038/ejhg.2012.115352219622713813Open DOISearch in Google Scholar

26. Brown JM, Witman GB. Cilia and diseases. Bioscience. 2014;64:1126-1137.10.1093/biosci/biu174442026125960570Open DOISearch in Google Scholar

27. Seo S, Guo DF, Bugge K., Morgan DA, Rahmouni K, SheffieldnVC. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet. 2009;18(7):1323-1331.10.1093/hmg/ddp031265577319150989Open DOISearch in Google Scholar

28. Ristoska Bojkovska N, Spahiu L, Janchevska A, Gucev ZS, Tasic V. Renal dysplasia in Bardet-Biedl syndrome. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2015;36(1):211-215.10.1515/prilozi-2015-0048Search in Google Scholar

29. Marshall JD, Bronson RT, Collin GB, et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med. 2005;165(6):675-683.10.1001/archinte.165.6.67515795345Search in Google Scholar

30. Pagon RA, Adam MP, Ardinger HH, et al., editors. Seattle (WA): University of Washington, Seattle; 1993-2017.Search in Google Scholar

31. Collin GB, Marshall JD, Ikeda A, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet. 2002;31(1):74-78.10.1038/ng86711941369Open DOISearch in Google Scholar

32. Wang L, Shoemaker AH. Eating behaviors in obese children with pseudohypoparathyroidism type 1a: a cross-sectional study. Int J Pediatr Endocrinol. 2014;2014(1):21.10.1186/1687-9856-2014-21420477725337124Search in Google Scholar

33. Turan S, Bastepe M. GNAS spectrum of disorders. Curr Osteoporos Rep. 2015;13(3):146-158.10.1007/s11914-015-0268-x441743025851935Search in Google Scholar

34. Levine MA. An update on the clinical and molecular characteristics of pseudohypoparathyroidism. Curr Opi Endocrinol Diabetes Obes. 2012;19(6):443-451.10.1097/MED.0b013e32835a255c367953523076042Search in Google Scholar

35. Rivera-Brugues N, Albrecht B, Wieczorek D, et al. Cohen syndrome diagnosis using whole genome arrays. J Med Genet. 2011;48(2):136-140.10.1136/jmg.2010.08220620921020Open DOISearch in Google Scholar

36. Kolehmainen J, Black GC, Saarinen A, et al. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet. 2003;72(6):1359-1369.10.1086/375454118029812730828Search in Google Scholar

37. Miyake N, Koshimizu E, Okamoto N, et al. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet. 2013;161A(9):2234-2243.10.1002/ajmg.a.3607223913813Search in Google Scholar

38. Ng SB, Bigham AW, Buckingham K.J et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42(9):790-793.10.1038/ng.646293002820711175Open DOISearch in Google Scholar

39. Lederer D, Grisart B, Digilio MC, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012;90(1):119-124.10.1016/j.ajhg.2011.11.021325787822197486Search in Google Scholar

40. Paulussen AD, Stegmann AP, Blok MJ, et al. MLL2 mutation spectrum in 45 patients with Kabuki syndrome. Hum Mutat. 2011;32(2):E2018-E2025.10.1002/humu.2141621280141Open DOISearch in Google Scholar

41. Turner G, Lower KM, White SM, et al. The clinical picture of the Borjeson-Forssman-Lehmann syndrome in males and heterozygous females with PHF6 mutations. Clin Genet. 2004;65(3):226-232.10.1111/j.0009-9163.2004.00215.x14756673Open DOISearch in Google Scholar

42. Lower KM, Turner G, Kerr BA, et al. Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome. Nat Genet. 2002;32(4):661-665.10.1038/ng104012415272Open DOISearch in Google Scholar

43. Cohen DM, Green JG, Miller J, Gorlin RJ, Reed JA. Acrocephalopolysyndactyly type II–Carpenter syndrome: clinical spectrum and an attempt at unification with Goodman and Summit syndromes. Am J Med Genet. 1987;28(2):311-324.10.1002/ajmg.13202802083322002Open DOISearch in Google Scholar

44. Alessandri JL, Dagoneau N, Laville JM, Baruteau J, Hebert JC, Cormier-Daire V. RAB23 mutation in a large family from Comoros Islands with Carpenter syndrome. Am J Med Genet. 2010;152A(4):982-986.10.1002/ajmg.a.3332720358613Search in Google Scholar

45. Jenkins D, Baynam G, Catte L. Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay. Hum Mutat. 2011;32(4):E2069-E2078.10.1002/humu.21457342986821412941Open DOISearch in Google Scholar

46. Chen L, Mullegama SV, Alaimo JT, Elsea SH. Smith-Magenis syndrome and its circadian influence on development, behavior, and obesity – own experience. Dev Period Med. 2015;19(2):149-156.Search in Google Scholar

47. Han JC, Liu QR, Jones M, Levinn RL, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. 2008;359(9):918-927.10.1056/NEJMoa0801119255370418753648Search in Google Scholar

48. Rodriguez-Lopez R, Perez JM, Balsera AM, et al. The modifier effect of the BDNF gene in the phenotype of the WAGRO syndrome. Gene. 2013;516(2):285-290.10.1016/j.gene.2012.11.07323266638Search in Google Scholar

49. Gucev Z, Muratovska O, Laban N, et al. Billateral polycystic kidneys in a girl with WAGR syndrome. Indian J Pediatr. 2011;78(10):1290-1292.10.1007/s12098-011-0457-221660403Search in Google Scholar

50. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903-908.10.1038/431859202122Search in Google Scholar

51. Gibson WT, Farooqi IS, Moreau M, et al. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab. 2004;89(10):4821-4826.10.1210/jc.2004-037615472169Search in Google Scholar

52. Mazen I, El-Gammal M, Abdel-Hamid M, Amr K. A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab. 2009;97(4):305-308.10.1016/j.ymgme.2009.04.00219427251Search in Google Scholar

53. Wabitsch M, Funcke JB, Lennerz B, et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2015;372:48-54.10.1056/NEJMoa140665325551525Search in Google Scholar

54. Cl´ement K, Vaisse C, Lahlou N. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392(6674):398-401.10.1038/329119537324Search in Google Scholar

55. Farooqi IS, Wangensteen T, Collins S. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356(3):237-247.10.1056/NEJMoa063988267019717229951Search in Google Scholar

56. Saeed S, Bonnefond A, Manzoor J, et al. Novel LEPR mutations in obese Pakistani children identified by PCR-based enrichment and next generation sequencing. Obesity. 2014;22(4):1112-1117.10.1002/oby.2066724319006Open DOISearch in Google Scholar

57. Huvenne H, Beyec J, P´epin D, et al. Seven novel deleterious LEPR mutations found in early-onset obesity: a ΔExon6-8 shared by subjects from Reunion Island, France, suggests a founder effect. J Clin Endocrinol Metab. 2015;100(5):E757-E66.10.1210/jc.2015-103625751111Search in Google Scholar

58. Farooqi, IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093-1103.10.1172/JCI0215693Search in Google Scholar

59. Simonds SE, Pryor JT, Ravussin E, et al. Leptin mediates the increase in blood pressure associated with obesity. Cell. 2014;159(6):1404-1416.10.1016/j.cell.2014.10.058425949125480301Search in Google Scholar

60. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879-884.10.1056/NEJM19990916341120410486419Search in Google Scholar

61. Doche ME, Bochukova EG, Su HW, et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Invest. 2012; 122(12):4732-4736.10.1172/JCI62696353353523160192Search in Google Scholar

62. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155-157.10.1038/5099620771Open DOISearch in Google Scholar

63. Farooqi IS, Drop S, Clements A, et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes. 2006; 55(9):2549-2553.10.2337/db06-021416936203Open DOISearch in Google Scholar

64. Krude H, Biebermann H, Gruters A. Mutations in the human proopiomelanocortin gene. Ann N Y Acad Sci. 2003;994:233-239.10.1111/j.1749-6632.2003.tb03185.x12851321Search in Google Scholar

65. Ozen S, Ozcan N, Ucar SK, Goksen D, Darcan S. Unexpected clinical features in a female patient with proopiomelanocortin (POMC) deficiency. J Pediatr Endocrinol Metab. 2015;28(5-6):691-694.10.1515/jpem-2014-032425503863Search in Google Scholar

66. Farooqi IS, Volders K, Stanhope R, et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J Clin Endocrinol Metab. 2007;92(9):3369-3373.10.1210/jc.2007-068717595246Search in Google Scholar

67. Jackson RS, Creemers JW, Farooqi IS. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest. 2003:112(10):1550-1560.10.1172/JCI200318784Search in Google Scholar

68. Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16(3):303–30610.1038/ng0797-3039207799Search in Google Scholar

69. Frank GR., Fox J, Candela N, et al. Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency. Mol Genet Metab. 2013;110(1-2):191-194.10.1016/j.ymgme.2013.04.005375984523800642Search in Google Scholar

70. Martín MG, Lindberg I, Solorzano-Vargas RS, et al. Congenital Proprotein Convertase 1/3 Deficiency Causes Malabsorptive Diarrhea and other Endocrinopathies in a Pediatric Cohort. Gastroenterology. 2013;145(1):138-148.10.1053/j.gastro.2013.03.048371913323562752Search in Google Scholar

71. Yourshaw M, Solorzano-Vargas RS, Pickett LA, et al. Exome Sequencing Finds a Novel PCSK1 Mutation in a Child With Generalized Malabsorptive Diarrhea and Diabetes Insipidus. J Pediatr Gastroenterol Nutr. 2013;57(6):759-767.10.1097/MPG.0b013e3182a8ae6c417006224280991Search in Google Scholar

72. Philippe J, Stijnen P, Meyre D, et al. A nonsense loss-of-function mutation in PCSK1contributes to dominantly inherited human obesity. Int J Obes. 2015;39(2):295-302.10.1038/ijo.2014.9624890885Search in Google Scholar

73. Dubern B, Bisbis S, Talbaoui H, et al. Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr. 2007;150(6):613-617.e1.10.1016/j.jpeds.2007.01.04117517245Search in Google Scholar

74. Garg G, Kumar J, McGuigan FE, et al. Variation in the MC4R Gene Is Associated with Bone Phenotypes in Elderly Swedish Women. Devaney J, ed. PLoS One. 2014;9(2):e88565.10.1371/journal.pone.0088565391644024516669Search in Google Scholar

75. Timpson NJ, Sayers A, Davey-Smith G, Tobias JH. How does body fat influence bone mass in childhood? A Mendelian randomization approach. J Bone Miner Res. 2009;24(3):522-533.10.1359/jbmr.081109287516519016587Open DOISearch in Google Scholar

76. Farooqi IS, Yeo GS, Keogh JM, et al. Dominant andrecessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271-279.10.1172/JCI9397Search in Google Scholar

77. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085-1095.10.1056/NEJMoa022050Search in Google Scholar

78. Yeo GS, Conie Hung CC, Rochford, J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. 2004;7(11):1187-1189.10.1038/nn1336Search in Google Scholar

79. Gray J, Yeo GS, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitiven function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. 2006;55(12):3366-3371.10.2337/db06-0550Open DOISearch in Google Scholar

80. Michaud JL, DeRossi C, May NR, Holdener BC, Fan CM. ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev. 2000;90(2):253-261.10.1016/S0925-4773(99)00328-7Search in Google Scholar

81. Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH–PAS transcription factor SIM1. Genes Dev. 1998;12(20):3264-3275.10.1101/gad.12.20.32643172169784500Search in Google Scholar

82. Michaud JL, Boucher F, Melnyk A. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet. 2001;10(14): 1465-1473.10.1093/hmg/10.14.146511448938Search in Google Scholar

83. Holder JL, Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet. 2000;9:101-108.10.1093/hmg/9.1.10110587584Search in Google Scholar

84. Bonnefond A, Raimondo A, Stutzmann F, et al. Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi–like features. J Clin Invest. 2013;123(7):3037-3041.10.1172/JCI68035369655923778136Search in Google Scholar

85. Montagne L, Raimondo A, Delobel B, et al. Identification of two novel loss-of-function SIM1 mutations in two overweight children with developmental delay. Obesity. 2014;22(12):2621-2624.10.1002/oby.2088625234154Search in Google Scholar

86. Ramachandrappa S, Raimondo A, Cali AMG, et al. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest. 2013;123(7):3042-3050.10.1172/JCI68016369655823778139Search in Google Scholar

87. Pearce LR, Atanassova N, Banton MC, et al. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation. Cell. 2013;155(4):765-777.10.1016/j.cell.2013.09.058389874024209692Search in Google Scholar

88. Borman AD, Pearce LR, Mackay DS, et al. A Homozygous Mutation in the TUB Gene Associated with Retinal Dystrophy and Obesity. Hum Mutat. 2014;35(3):289-293.10.1002/humu.22482428401824375934Open DOISearch in Google Scholar

89. Choquet H, Meyre D. Molecular Basis of Obesity: Current Status and Future Prospects. Curr Genomics. 2011;12(3):154-168.10.2174/138920211795677921313700122043164Search in Google Scholar

90. Choquet H, Meyre D. Genetics of Obesity: What have we Learned? Curr Genomics. 2011;12(3):169-179.10.2174/138920211795677895313700222043165Open DOISearch in Google Scholar

91. Stutzmann F, Tan K, Vatin V, et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes. 2008;57(9):2511-2518.10.2337/db08-0153251850418559663Open DOISearch in Google Scholar

92. Stanikova D, Surova M, Buzga M, et al. Age of obesity onset in MC4R mutation carriers. Endocr Regul. 2014;49(3):137-140.10.4149/endo_2015_03_13726238496Search in Google Scholar

93. Biebermann H, Castaneda TR, van Landeghem F, et al. A role for β-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. 2006;3(2):141-146.10.1016/j.cmet.2006.01.00716459315Open DOISearch in Google Scholar

94. Challis BG, Pritchard LE, Creemers JW, et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet. 2002;11(17):1997-2004.10.1093/hmg/11.17.199712165561Search in Google Scholar

95. Lee YS, Challis BG, Thompson DA, et al. A POMC variant implicates β-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab. 2006;3(2):135-140.10.1016/j.cmet.2006.01.00616459314Open DOISearch in Google Scholar

96. Farooqi IS, Keogh JM, Kamath S, et al. Metabolism: partial leptin deficiency and human adiposity. Nature. 2001;414(6859):34-35.10.1038/3510211211689931Search in Google Scholar

97. Cummings DE, Schwartz MW. Genetics and pathophysiology of human obesity. Annu Rev Med. 2003;54:453-471.10.1146/annurev.med.54.101601.15240312414915Open DOISearch in Google Scholar

98. Meyre D, Bouatia-Naji N, Tounian A, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet. 2005;37(8):863-867.10.1038/ng1604200080416025115Search in Google Scholar

99. Meyre D, Lecoeur C, Delplanque J, et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes. 2004;53(3):803-811.10.2337/diabetes.53.3.80314988267Search in Google Scholar

100. Wang R, Zhou D, Xi B, et al. ENPP1/PC-1 gene K121Q polymorphism is associated with obesity in European adult populations: evidence from a meta-analysis involving 24,324 subjects. Biomed Environ Sci. 2011;24(2):200-206.Search in Google Scholar

101. Warrington NM, Howe LD, Paternoster L, et al. A genome-wide association study of body mass index across early life and childhood. Int J Epidemiol. 2015;44(2):700-712.10.1093/ije/dyv077446979825953783Search in Google Scholar

102. Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44(5):526-531.10.1038/ng.2247337010022484627Open DOISearch in Google Scholar

103. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197-206.10.1038/nature14177438221125673413Search in Google Scholar

104. Meyre D, Delplanque J, Chevre JC, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet. 2009;41(2):157-159.10.1038/ng.30119151714Open DOISearch in Google Scholar

105. Li A, Meyre D. Jumping on the Train of Personalized Medicine: A Primer for Non-Geneticist Clinicians: Part 3. Clinical Applications in the Personalized Medicine Area. Curr Psychiatry Rev. 2014;10(2):118-132.10.2174/1573400510666140630170549428788425598768Search in Google Scholar

106. Bonnefond A, Philippe J, Durand E, et al. Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing. Diabetes Care. 2014;37(2):460-467.10.2337/dc13-069824041679Open DOISearch in Google Scholar

107. Philippe J, Derhourhi M, Durand E, et al. What Is the Best NGS Enrichment Method for the Molecular Diagnosis of Monogenic Diabetes and Obesity? Brusgaard K, ed. PLoS One. 2015;10(11):e0143373.10.1371/journal.pone.0143373465789726599467Search in Google Scholar

108. Hinney A, Wolters B, Pütter C, et al. J Pediatr Endocrinol Metab. 2013;26(11-12):1209-1213.10.1515/jpem-2013-017923843577Open DOISearch in Google Scholar

109. Reinehr T, Wolters B, Roth CL, Hinney A. (2014) FTO gene: association to weight regain after lifestyle intervention in overweight children. Horm Res Paediatr. 2014;81(6):391-396.10.1159/00035832824819256Search in Google Scholar

110. Qi L. Gene–diet interaction and weight loss. Curr Opinion Lipid. 2014;25(1):27-34.10.1097/MOL.0000000000000037533019824345984Search in Google Scholar

111. Le Beyec J, Cugnet-Anceau C, Pepin D, et al. Homozygous leptin receptor mutation due to uniparental disomy of chromosome 1: response to bariatric surgery. J Clin Endocrinol Metab. 2013;98(2):E397-E402.10.1210/jc.2012-277923275530Search in Google Scholar

112. Aslan IR, Campos GM, Calton MA, Evans DS, Merriman RB, Vaisse C. Weight Loss after Roux-en-Y Gastric Bypass in Obese Patients Heterozygous for MC4R Mutations. Obes Surg. 2011;21(7):930-934.10.1007/s11695-010-0295-8311979820957447Open DOISearch in Google Scholar

113. Hatoum IJ, Stylopoulos N, Vanhoose AM, et al. Melanocortin-4 Receptor Signaling Is Required for Weight Loss after Gastric Bypass Surgery. J Clin Endocrinol Metabol. 2012;97(6):E1023-E1031.10.1210/jc.2011-3432338741222492873Search in Google Scholar

114. Valette M, Poitou C, Le Beyec J, Bouillot J-L, Clement K, Czernichow S. Melanocortin-4 Receptor Mutations and Polymorphisms Do Not Affect Weight Loss after Bariatric Surgery. Folli F, ed. PLoS One. 2012;7(11):e48221.10.1371/journal.pone.0048221350404523185251Search in Google Scholar

115. Meyre D, Froguel P, Horber FF, Kral JG. Comment On: Valette et al. Melanocortin-4 Receptor Mutations and Polymorphisms Do Not Affect Weight Loss after Bariatric Surgery. PLoS One. 2012;7(11):E48221. Folli F, ed. PLoS One. 2014;9(3):e93324.10.1371/journal.pone.0093324Search in Google Scholar

116. Moore BS, Mirshahi UL, Yost EA, et al. Long-Term Weight-Loss in Gastric Bypass Patients Carrying Melanocortin 4 Receptor Variants. López M, ed. PLoS One. 2014;9(4):e93629.10.1371/journal.pone.0093629397631824705671Search in Google Scholar

117. Sarzynski MA, Jacobson P, Rankinen, T, et al. Associations of markers in 11 obesity candidate genes withmaximal weight loss and weight regain in the SOS bariatric surgery cases. Int J Obes. 2011;35(5):676-683.10.1038/ijo.2010.16620733583Search in Google Scholar

118. Hatoum IJ, Greenawalt DM, Cotsapas C, Daly MJ, Reitman ML, Kaplan LM. Weight Loss after Gastric Bypass Is Associated with a Variant at 15q26.1. Am J Hum Genet. 2013;92(5):827-834.10.1016/j.ajhg.2013.04.009364464223643386Search in Google Scholar

119. Fujioka K. Safety and tolerability of medications approved for chronic weight management. Obesity. 2015;23(Suppl 1):S7-S11.10.1002/oby.2109425900872Search in Google Scholar

120. Lazary J, Juhasz G, Hunyady L, Bagdy G. Personalized medicine can pave the way for the safe use of CB(1) receptor antagonists. Trends Pharmacol Sci. 2011;32(5):270-280.10.1016/j.tips.2011.02.01321497918Search in Google Scholar

121. Bjorge T, Engeland A, Tverdal A, Smith GD. Body mass index in adolescence in relation to cause-specific mortality: a follow-up of 230,000 Norwegian adolescents. Am J Epidemiol. 2008;168(1):30-37.10.1093/aje/kwn09618477652Search in Google Scholar

122. Gordon JE, Hughes MS, Shepherd K, et al. Obstructive sleep apnoea syndrome in morbidly obese children with tibia vara. J Bone Joint Surg Br. 2006;88(1):100-103.10.1302/0301-620X.88B1.1691816365129Search in Google Scholar

123. Murray AW, Wilson NI. Changing incidence of slipped capital femoral epiphysis: a relationship with obesity? J Bone Joint Surg Br. 2008;90(1):92-94.10.1302/0301-620X.90B1.19502Search in Google Scholar

124. Timpson NJ, Sayers A, Davey-Smith G, Tobias JH. How does body fat influence bone mass in childhood? A Mendelian randomization approach. J Bone Miner Res. 2009;24(3):522-533.10.1359/jbmr.081109287516519016587Open DOISearch in Google Scholar

125. Tirosh A, Shai I, Afek A, Dubnov-Raz G, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med. 2011;364(14):1315-1325.10.1056/NEJMoa1006992493925921470009Search in Google Scholar

126. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA. 2012;307(5):483-490.10.1001/jama.2012.40636245222253364Search in Google Scholar

127. Calcaterra V, Klersy C, Muratori T, et al. Prevalence of metabolic syndrome (MS) in children and adolescents with varying degrees of obesity. Clin Endocrinol (Oxf). 2008;68(6):868-872.10.1111/j.1365-2265.2007.03115.x17980007Search in Google Scholar

128. Rosenfield RL, Lipton RB, Drum ML. Thelarche, pubarche, and menarche attainment in children with normal and elevated body mass index. Pediatrics. 2009;123(1):84-88.10.1542/peds.2008-014619117864Search in Google Scholar

129. Bau AM, Ernert A, Schenk L, et al. Is there a further acceleration in the age at onset of menarche? A cross-sectional study in 1840 school children focusing on age and bodyweight at the onset of menarche. Eur J Endocrinol. 2009;160(1):107-113.10.1530/EJE-08-059418974233Search in Google Scholar

130. Mamun AA, Hayatbakhsh MR, O’Callaghan M, Williams G, Najman J. Early overweight and pubertal maturation—pathways of association with young adults’ overweight: a longitudinal study. Int J Obes (Lond). 2009;33(1):14-20.10.1038/ijo.2008.22018982007Search in Google Scholar

131. Denzer C, Weibel A, Muche R, Karges B, Sorgo W, Wabitsch M. Pubertal development in obese children and adolescents. Int J Obes (Lond). 2007;31(10):1509-1519.10.1038/sj.ijo.080369117653066Search in Google Scholar

132. Taylor ED, Theim KR, Mirch MC, et al. Orthopedic complications of overweight in children and adolescents. Pediatrics. 2006; 117(6):2167-2174.10.1542/peds.2005-1832186300716740861Search in Google Scholar

133. DiVall SA, Radovick S. Endocrinology of female puberty. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):1-4.10.1097/MED.0b013e3283207937Search in Google Scholar

134. Coffield JE, Metos JM, Utz RL, Waitzman NJ. A multivariate analysis of federally mandated school wellness policies on adolescent obesity. J Adolesc Health. 2011;49(4):363-70.10.1016/j.jadohealth.2011.01.01021939866Search in Google Scholar

135. Kalarchian MA, Levine MD, Arslanian SA, et al. Family-based treatment of severe pediatric obesity: randomized, controlled trial. Pediatrics. 2009;124(4):1060-1068.10.1542/peds.2008-3727293549419786444Search in Google Scholar

136. Ortega FB, Labayen I, Ruiz JR, et al. Improvements in fitness reduce the risk of becoming overweight across puberty. Med Sci Sports Exerc. 2011;43(10):1891-1897.10.1249/MSS.0b013e3182190d7121407124Search in Google Scholar

137. Chang S-H, Stoll CRT, Song J, Varela E, Eagon CJ, Colditz G a. Bariatric surgery: an updated systematic review and meta analysis, 2003–2012. JAMA Surg. 2014;149(3):275-287.10.1001/jamasurg.2013.3654396251224352617Search in Google Scholar

138. Cummings DE, Overduin J, Foster-Schubert KE. Gastric Bypass for Obesity : Mechanisms of Weight Loss and Diabetes Resolution. J Clin Endocrinol Metab. 2015;89(6):2608-2615.10.1210/jc.2004-043315181031Search in Google Scholar

139. Chapman AE, Hons BA, Kiroff G, Game P. Clinical review Laparoscopic adjustable gastric banding in the treatment of obesity : A systematic literature review. Surgery. 2004;153(3):326-351.10.1016/S0039-6060(03)00392-1Search in Google Scholar

eISSN:
1857-8985
ISSN:
1857-9345
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Ethik und Geschichte der Medizin, Klinische Medizin, andere, Sozialwissenschaften, Pädagogik