Uneingeschränkter Zugang

Computational Evaluation of the Limiting Thrust of the Peripheral Thruster Taking into Account the Propeller Blade Yield Stress and the Thrust Breakdown Due to Cavitation

, , ,  und   
19. Juni 2025

Zitieren
COVER HERUNTERLADEN

Wikipedia, Voith Schneider Propeller, 09.05.2024. Retrieved from https://en.wikipedia.org/wiki/Voith_Schneider_Propeller Search in Google Scholar

Wikipedia, Pump-jet, 09.05.2024, Retrieved from https://en.wikipedia.org/wiki/Pump-jet Search in Google Scholar

Kongsberg, Super silent tunnel thruster, 09.05.2024, Retrieved from https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/super-silent-tunnel-thruster/ Search in Google Scholar

Wikipedia, Rim-driven thruster, 09.05.2024, Retrieved from https://en.wikipedia.org/wiki/Rim-driven_thruster Search in Google Scholar

Det Norske Veritas, “Assessment of station keeping capability of dynamic positioning vessels”. Standard No. DNV-ST-0111, December 2021. Search in Google Scholar

Maritime Advanced Research Centre CTO S.A. Experimental analysis of the hydrodynamic characteristics of the peripheral thruster. Technical Report, March 2022. Search in Google Scholar

Huang Y., Chen L., Chen P., Negenborn RR, van Gelder PHAJM. Ship collision avoidance methods: State-of-the-art. Safety Science 2020, vol. 121, pp. 451–473. ISSN 0925-7535. https://doi.org/10.1016/j.ssci.2019.09.018. Search in Google Scholar

Lindau JW, Boger DA, Medvitz RB, Kunz RF. Propeller cavitation breakdown analysis. J Fluids Eng. 2005, vol. 127, pp. 995–1002. doi: 10.1115/1.1988343. Search in Google Scholar

Rehman S, Wajiha S, Paboeuf J. A comparison of different fluid-structure interaction analysis techniques for the marine propeller. ASME 2021 Power Conference. doi: 10.1115/POWER2021-64369. Search in Google Scholar

Savio L, Sileo L, Ås SK. A comparison of physical and numerical modeling of homogenous isotropic propeller blades. J Mar Sci Eng 2020, vol. 8, p. 21. doi: 10.3390/jmse8010021. Search in Google Scholar

Schneider T, Hu Y, Gao X, Dumas J, Zorin D, Panozzo D. A large scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with finite element ACM Trans. Graph. 41, 3, Article 23 (June 2022). https://doi.org/10.1145/3508372. Search in Google Scholar

Shayanpoor A, Hajivand A, Moore M. Hydroelastic analysis of composite marine propeller basis fluid-structure interaction (FSI), Int J Marit Technol, 2020, vol. 13, pp. 51–59. Search in Google Scholar

Young YL. Time-dependent hydroelastic analysis of cavitating propulsors. Journal of Fluids and Structures 2007, vol. 23, no. 2, pp. 269–295. ISSN 0889-9746. https://doi.org/10.1016/j.jfluidstructs.2006.09.003. Search in Google Scholar

Magionesi F, Dubbioso G, Muscari R. Fluid–structure interaction of a marine rudder at incidence in the wake of a propeller. Phys Fluids 2024, vol. 36. doi: 10.1063/5.0201867. Search in Google Scholar

Schnerr GH, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics. Fourth International Conference on Multiphase Flow, 2001, ICMF New Orleans. Search in Google Scholar

Sprache:
Englisch