Uneingeschränkter Zugang

Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine


Zitieren

N. Olmer, B. Comer, B. Roy, X. Mao, and D. Rutherford, “Greenhouse gas emissions from global shipping.” [Online]. Available: https://theicct.org/wp-content/uploads/2021/06/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf. [Accessed: Oct. 15, 2023]. Search in Google Scholar

International Maritime Organization, “Initial IMO GHG strategy.” [Online]. Available: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gasemissions-from-ships.aspx. [Accessed: Oct. 15, 2023]. Search in Google Scholar

International Maritime Organization, “Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue.” [Online]. Available: https://unfccc.int/sites/default/files/resource/250_IMO%20submission_Talanoa%20Dialogue_April%202018.pdf. [Accessed: Oct. 15, 2023]. Search in Google Scholar

International Maritime Organization, “IMO. Low carbon shipping and air pollution control.” [Online]. Available: http://www.imo.org/en/MediaCentre/HotTopics/GHG/Pages/default.aspx. [Accessed: Oct. 15, 2023]. Search in Google Scholar

International Maritime Organization, “Fourth IMO GHG study 2020 executive-summary.” [Online]. Available: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Fourth%20IMO%20GHG%20Study%202020%20Executive-Summary.pdf. [Accessed: Oct. 15, 2023]. Search in Google Scholar

Finnish Marine Industries, “Journey to a carbon-free world: Introducing the NYK SUPER ECO SHIP 2050.” [Online]. Available: https://meriteollisuus.teknologiateollisuus.fi/en/ajankohtaista/news/journey-carbon-free-world-introducing-nyk-super-eco-ship-2050. [Accessed: Oct. 15, 2023]. Search in Google Scholar

H. Shi, Q. Zhang, M. Liu, K. Yang, and J. Yuan, “Numerical Study of the Ejection Cooling Mechanism of Ventilation for a Marine Gas Turbine Enclosure,” Polish Maritime Research, Vol. 29, No. 3, pp. 119–127, 2022, doi: org/10.2478/ pomr-2022-0032. Search in Google Scholar

T. Niksa-Rynkiewicz, A. Witkowska, J. Głuch, and M. Adamowicz, “Monitoring the Gas Turbine Start-Up Phase on a Platform Using a Hierarchical Model Based on Multi-Layer Perceptron Networks,” Polish Maritime Research, Vol. 29, No. 4, pp. 123–131, 2022, doi: 10.2478/ pomr-2022-0050. Search in Google Scholar

E.-L. Tsougranis and D. Wu, “A feasibility study of organic Rankine cycle (ORC) power generation using thermal and cryogenic waste energy on board an LNG passenger vessel,” International Journal of Energy Research, Vol. 42, No. 9, pp. 3121–3142, July 2018, doi: 10.1002/er.4047. Search in Google Scholar

M. E. Mondejar, J. G. Andreasen, L. Pierobon, U. Larsen, M. Thern, and F. Haglind, “A review of the use of organic Rankine cycle power systems for maritime applications,” Renewable and Sustainable Energy Reviews, Vol. 91, pp. 126– 151, 2018, doi: 10.1016/j.rser.2018.03.074. Search in Google Scholar

T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Applied Energy, Vol. 231. 2018, doi: 10.1016/j.apenergy.2018.09.022. Search in Google Scholar

O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, Vol. 26, No. 3, pp. 181–187, Sep. 2019, doi: 10.2478/pomr-2019-0059. Search in Google Scholar

G. W. Swift, “Thermoacoustic engines,” J. Acoust. Soc. Am., Vol. 84, No. 4, pp. 1145–1180, 1988. Search in Google Scholar

G. W. Swift, “Thermoacoustics: A unifying perspective for some engines and refrigerators,” Acoust. Soc. Am., 2002. ISBN 0-7354-0065-2. Search in Google Scholar

L. M. Qi, P. Lou, K. Wang, et al., “Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen,” Chin. Sci. Bull., Vol. 58, pp. 1325-1330, 2013, doi: 10.1007/s11434-012-5214-z. Search in Google Scholar

Z. Yang, V. Korobko, M. Radchenko, and R. Radchenko, “Improving thermoacoustic low-temperature heat recovery systems,” Sustainability (Switzerland), Vol. 14, No. 19, art. No. 12306, 2022, doi: 10.3390/su141912306. Search in Google Scholar

T. K. Das, P. Halder, and A. Samad, “Optimal design of air turbines for oscillating water column wave energy systems: A review,” Int. J. Ocean Clim. Syst., Vol. 8, No. 1, pp. 37–49, 2017, doi: 10.1177/1759313117693639. Search in Google Scholar

A. F. O. Falcao and J. C. C. Henriques, “Oscillating-water-column wave energy converters and air turbines: A review,” Renewable Energy, 2015, doi: 10.1016/j.renene.2015.07.086. Search in Google Scholar

A. Thakker and F. Hourigan, “Modeling and scaling of the impulse turbine for wave power applications,” Renewable Energy, Vol. 29, No. 3, pp. 305–317, 2004, doi: 10.1016/ S0960-1481(03)00253-2. Search in Google Scholar

D. Liu, Y. Chen, W. Dai, et al., “Acoustic characteristics of bi-directional turbines for thermoacoustic generators,” Front. Energy, Vol. 16, pp. 1027–1036, 2022, doi: 10.1007/ s11708-020-0702-3. Search in Google Scholar

M. A. Elhawary, A. H. Ibrahim, A. S. Sabry, and E. Abdel-Rahman, “Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion,” Renewable Energy, 2020, doi: 10.1016/j. renene.2020.05.162. Search in Google Scholar

C. Iniesta, J. L. Olazagoitia, J. Vinolas, and J. Aranceta, “Review of travelling-wave thermoacoustic electric-generator technology,” in Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, doi: 10.1177/0957650918760627. Search in Google Scholar

Y. Kondratenko, S. Serbin, V. Korobko, and O. Korobko, “Optimisation of bi-directional pulse turbine for waste heat utilization plant based on green IT paradigm,” Studies in Systems, Decision and Control, Vol. 171, pp. 469–485, 2019, doi: 10.1007/978-3-030-00253-4_20. Search in Google Scholar

T. Kloprogge, “Turbine design for thermo-acoustic generator,” Master’s thesis, Aeronautical Engineering, Hogeschool. Holland Delft, 2012. Available: https://bioenergyforumfact.org/sites/default/files/2018-06/5.%20Turbine%20Design%20for%20a%20Thermo-acoustic%20Generator.pdf. [Accessed: Oct. 15, 2023]. Search in Google Scholar

Y. Kondratenko, O. Korobko, and V. Korobko, “Microprocessor system for thermoacoustic plants efficiency analysis based on a two-sensor method,” Sensors & Transducers, Vol. 24, Aug. 2013. Available: https://www.academia.edu/95466184/Microprocessor_System_for_Thermoacoustic_Plants_Efficiency_Analysis_Based_on_a_Two_Sensor_Method. [Accessed: Oct. 15, 2023]. Search in Google Scholar

ANSYS, Inc., ANSYS Fluent Theory Guide. ANSYS, Inc., 2013. Search in Google Scholar

S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, “Plasma-assisted reforming of natural gas for GTL: Part II - Modeling of the methane-oxygen reformer,” IEEE Trans. Plasma Sci., Vol. 43, No. 12, pp. 3964–3968, 2015, doi: 10.1109/ TPS.2015.2438174. Search in Google Scholar

I. Matveev, S. Serbin, T. Butcher, and N. K. Tutu, “Flow structure investigations in a Tornado combustor,” in 4th International Energy Conversion Engineering Conference, AIAA2006-4141, Vol. 2, 2006, pp. 1001–1013, doi: 10.2514/6.2006-4141. Search in Google Scholar

O. Cherednichenko, S. Serbin, and M. Dzida, “Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products,” Polish Maritime Research, Vol. 26, No. 4, pp. 149–156, 2020, doi: 10.2478/pomr-2019-0077. Search in Google Scholar

S. Serbin, K. Burunsuz, M. Dzida, J. Kowalski, and D. Chen, “Investigation of ecological parameters of a gas turbine combustion chamber with steam injection for the floating production, storage, and offloading vessel,” International Journal of Energy and Environmental Engineering, Vol. 13, No. 3, pp. 873–888, 2022, doi: 10.1007/s40095-021-00433-w. Search in Google Scholar

I. B. Matveev, N. V. Washchilenko, and S.I. Serbin, “Plasma-Assisted Reforming of Natural Gas for GTL: Part III - Gas Turbine Integrated GTL,” IEEE Trans. Plasma Sci., Vol. 43, No. 12, pp. 3969–3973, 2015, doi: /10.1109/TPS.2015.2464236. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie