Zitieren

M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems,” Transdisciplinary perspectives on complex systems: New findings and approaches. 2017, pp. 85-113, https://www.researchgate.net/profile/Michael-Grieves/publication/306223791_Digital_Twin_Mitigating_Unpredictable_Undesirable_Emergent_Behavior_in_Complex_Systems/links/5aa54e1ea6fdccd544bc386f/Digital-Twin-Mitigating-Unpredictable-Undesirable-Emerge. Search in Google Scholar

S. Evans, C. Savian, A. Burns and C. Cooper, “Digital Twins for the Built Environment: An Introduction to the Opportunities,” Built Environmental News. 2019, https://www.theiet.org/media/8762/digital-twins-for-the-built-environment.pdf. Search in Google Scholar

D. Botín-Sanabria, A.-S. Mihaita, R. Peimbert-García, M. Ramírez-Moreno, R. Ramírez-Mendoza and J. Lozoya-Santos, “Digital Twin Technology Challenges and Applications: A Comprehensive Review,” Remote Sensing. 2022, vol. 14(6), no. 1335, doi: 10.3390/rs14061335. Search in Google Scholar

M. Singh, E. Fuenmayor, E. Hinchy, Y. Qiao, N. Murray and D. Devine, “Digital Twin: Origin to Future,” Appl. Syst. Innov. 2021, vol. 4, no. 36, doi: 10.3390/asi4020036. Search in Google Scholar

L. Li, S. Aslam, A. Wileman and S. Perinpanayagam, “Digital Twin in Aerospace Industry: A Gentle Introduction,” IEEE Access. 2022, vol. 10, pp. 9543-9562, doi: 10.1109/ ACCESS.2021.3136458. Search in Google Scholar

M. Xia, H. Shao, D. Williams, S. Lu, L. Shu and C.W. de Silva, “Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning,” Reliability Engineering & System Safety. 2021, vol. 215, doi:10.1016/j.ress.2021.107938. Search in Google Scholar

S. Choi, J. Woo, J. Kim and J. Lee, “Digital Twin-Based Integrated Monitoring System: Korean Application Cases,” Sensors. 2022, vol. 22, no. 5450, doi: 10.3390/s22145450. Search in Google Scholar

D. Zhong, Z. Xia, Y. Zhu and J. Duan, “Overview of predictive maintenance based on digital twin technology,” Heliyon. 2023, vol. 9, no. 4, doi: 10.1016/j.heliyon.2023.e14534. Search in Google Scholar

A.T. Hoang, A.M. Foley, S. Nižetić, Z. Huang, H.C. Ong, A.I. Ölçer, V.V. Pham and X.P. Nguyen, “Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway,” Journal of Cleaner Production. 2022, vol. 355, doi:10.1016/j.jclepro.2022.131772. Search in Google Scholar

O. Melnyk, O. Sagaydak, O. Shumylo and O. Lohinov, “Modern Aspects of Ship Ballast Water Management and Measures to Enhance the Ecological Safety of Shipping,” in Systems, Decision and Control in Energy V. Studies in Systems, Decision and Control, Springer ed. 2023, vol. 481, Cham, doi: 10.1007/978-3-031-35088-7_39. Search in Google Scholar

O. Onishchenko, A. Bukaros, O. Melnyk, V. Yarovenko, A. Voloshyn and O. Lohinov, “Ship Refrigeration System Operating Cycle Efficiency Assessment and Identification of Ways to Reduce Energy Consumption of Maritime Transport,” in Systems, Decision and Control in Energy V. Studies in Systems, Decision and Control, 2023, vol 481. Springer, Cham., doi: 10.1007/978-3-031-35088-7_36. Search in Google Scholar

S. Hautala, M. Mikulski, E. Söderäng, X. Storm and S. Niemi, “Toward a digital twin of a mid-speed marine engine: From detailed 1D engine model to real-time implementation on a target platform,” International Journal of Engine Research. 2022, doi: 10.1177/14680874221106168. Search in Google Scholar

S. Stoumpos, G. Theotokatos, C. Mavrelos and E. Boulougouris, “Towards Marine Dual Fuel Engines Digital Twins — Integrated Modelling of Thermodynamic Processes and Control System Functions,” J. Mar. Sci. Eng. 2020, vol. 8, no. 3(200), doi: 10.3390/ jmse8030200. Search in Google Scholar

I. Asimakopoulos, L. Avendaño-Valencia, M. Lützen and N. Rytter, “Data-driven condition monitoring of two-stroke marine diesel engine piston rings with machine learning,” Ships and Offshore Structures. 2023, doi: 10.1080/17445302.2023.2237302. Search in Google Scholar

O. Bondarenko and T. Fukuda, “Development of a diesel engine’s digital twin for predicting propulsion system dynamics,” Energy. 2020, vol. 196, doi:10.1016/j.energy.2020.117126. Search in Google Scholar

R. Varbanets, O. Fomin, V. Píštěk, V. Klymenko, D. Minchev, A. Khrulev, V. Zalozh and P. Kučera, “Acoustic method for estimation of marine low-speed engine turbocharger parameters,” Journal of Marine Science and Engineering. 2021, vol. 3, no. 9, doi: 10.3390/jmse9030321. Search in Google Scholar

R. Varbanets, O. Shumylo, A. Marchenko, D. Minchev, V. Kyrnats, V. Zalozh, N. Aleksandrovska, R. Brusnyk and K. Volovyk, “Concept of vibroacoustic diagnostics of the fuel injection and electronic cylinder lubrication systems of marine diesel engines,” Polish Maritime Research. 2022, vol. 29, no. 4, pp. 88-96, doi: 10.2478/pomr-2022-0046. Search in Google Scholar

S. Neumann, R. Varbanets, D. Minchev, V. Malchevsky and V. Zalozh, “Vibrodiagnostics of marine diesel engines in IMES GmbH systems,” Ships and Offshore Structures. 2022, doi: 10.1080/17445302.2022.2128558. Search in Google Scholar

O. Yeryganov and R. Varbanets, “Features of the fastest pressure growth point during compression stroke,” Diagnostyka. 2018, vol. 19, no. 2, pp. 71-76, doi: 10.29354/diag/89729. Search in Google Scholar

D. Minchev, R. Varbanets, N. Alexandrovskaya and L. Pisintsaly, “Marine diesel engines operating cycle simulation for diagnostics issues,” Acta Polytechnica. 2021, vol. 61, no. 3, pp. 428-440, doi: 10.14311/ap.2021.61.0435. Search in Google Scholar

D. Minchev, O. Gogorenko, R. Varbanets, Y. Moshentsev, V. Píštěk, P. Kučera, O. Shumylo and V. Kyrnats, “Prediction of centrifugal compressor instabilities for internal combustion engines operating cycle simulation,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2023, vol. 237, no. 2-3, pp. 572-584, doi: 10.1177/09544070221075419. Search in Google Scholar

Н. Ф. Разлейцев, Моделирование и оптимизация процесса сгорания в дизелях, Харьков: Вища школа, 1980, p. 169. Search in Google Scholar

А. Ф. Шеховцов, Ф. И. Абрамчук and В. И. и. д. Крутов, Процессы в перспективных дизелях, Харьков: Основа, 1992, p. 352. Search in Google Scholar

L. Grekhov, K. Mahkamov and A. Kuleshov, “Optimization of Mixture Formation and Combustion in Two-Stroke OP Engine Using Innovative Diesel Spray Combustion Model and Fuel System Simulation Software,” SAE. 2015, 2015-01-1859, doi: 10.4271/2015-01-1859. Search in Google Scholar

A. Kuleshov, K. Mahkamov, A. Kozlov and Y. Fadeev, “Simulation of dual-fuel diesel combustion with multi-zone fuel spray combustion model,” Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference. 2014, pp. 1-13, doi: 10.1115/ICEF2014-5700. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie