Uneingeschränkter Zugang

Transfer Function for a Controllable Pitch Propeller with Added Water Mass


Zitieren

MacPherson, D.M., Puleo, V.R., Packard, M.B. 2007. Estimation of entrained water added mass properties for vibration analysis. https://cutt.ly/8GVZdOe. Search in Google Scholar

Faltinsen, O., Minsaas, K.J., Liapias, N., Skjørdal, S.O. 1981. Prediction of resistance and propulsion of a ship in a seaway. In: T. Inui (Ed.). Proceedings of 13th Symposium on Naval Hydrodynamics (pp. 1-19). Tokio: University of Trondheim. Search in Google Scholar

Król, P. 2021. Hydrodynamic state of art review: Rotor – stator marine propulsor systems design. Polish Maritime Research, 28(1), 72-82. https://doi.org/10.2478/pomr-2021-0007 Search in Google Scholar

Koibakov, S.M., Umirkhanov, M.G. 2013. Model research of ice jams. World Applied Sciences Journal, 25(8), 1158-1160. https://doi.org/10.5829/idosi.wasj.2013.25.08.13382 Search in Google Scholar

Koibakov, S.M., Umirkhanov, M.G. 2013. Icebreaker unit. World Applied Sciences Journal, 25(8), 1251-1254. https://doi.org/10.5829/idosi.wasj.2013.25.08.13423 Search in Google Scholar

Gayen, D., Chakraborty, D., Tiwari, R. 2017. Whirl frequencies and critical speeds of a rotor-bearing system with a cracked functionally graded shaft − finite element analysis. European Journal of Mechanics − A/Solids, 61, 47-58. Search in Google Scholar

Lou, B., Cui, H. 2021. Fluid–structure interaction vibration experiments and numerical verification of a real marine propeller. Polish Maritime Research, 28(3), 61-75. https://doi.org/10.2478/pomr-2021-0034 Search in Google Scholar

Prohl, M.A. 1945. A general method for calculating critical speeds of flexible rotors. Journal of Applied Mechanics, 12(3), 142-148. Search in Google Scholar

Ostanin, V. 2022. Vadym Effects of repulsion and attraction between rotating cylinders in fluids. Scientific Herald of Uzhhorod University. Series “Physics”, (51), 39-47. https://doi.org/10.54919/2415-8038.2022.51.39-47 Search in Google Scholar

Klendii, M., Logusch, I., Dragan, A., Tsvartazkii, I., Grabar, A. 2022. Justification and calculation of design and strength parameters of screw loaders. Machinery & Energetics, 13(4), 48-59. https://doi.org/10.31548/machenergy.13(4).2022.48-59 Search in Google Scholar

Yoon, M. 2016. A Transfer Function Model of Thrust Dynamics for Multi-Rotor Helicopters. International Journal of Engineering Research & Technology, 5(1), 15-18. Search in Google Scholar

Boletis, E., de Lange, R., Bulten, N. 2015. Impact of propulsion system integration and controls on the vessel DP and maneuvering capability. IFAC-PapersOnLine, 48(16), 160-165. Search in Google Scholar

Xiros, N.I. 2004. PID marine engine speed regulation under full load conditions for sensitivity H∞-norm specifications against propeller disturbance. Journal of Marine Engineering & Technology, 3(2), 3-11. Search in Google Scholar

Smailova, G., Yussupova, S., Uderbaeva, A., Kurmangaliyeva, L., Balbayev, G., Zhauyt, A. 2018. Calculation and construction of the tolling roller table. Vibroengineering Procedia, 18, 14-19. https://doi.org/10.21595/vp.2018.19908 Search in Google Scholar

Koushan, K. 2006. Dynamics of ventilated propeller blade loading on thrusters. In: World Maritime Technology Conference (pp. 18-21). London: Macmillan Education. Search in Google Scholar

Senjanović, I., Hadžić, N., Murawski, L., Vladimir, N. 2019. Analytical procedures for torsional vibration analysis of ship power transmission system. Engineering Structures, 178, 227-244. Search in Google Scholar

Leschev, V.A. 2018. Marine diesel ACS with external feedback speed sensor. Modern Engineering and Innovative Technologies, 5, 11-17. Search in Google Scholar

Kukhar, V., Vasylevskyi, O., Khliestova, O., Berestovoi, I., Balalayeva, E. 2022. Hydraulic Press Open Die Forging of 21CrMoV5-7 Steel CCM Roller with Flat Upper and Concave Semi-round Lower Cogging Dies. Lecture Notes in Mechanical Engineering, 489-498. https://doi.org/10.1007/978-3-030-91327-4_48 Search in Google Scholar

Aghbalyan, S., Simonyan, V. 2022. Study of hardening and structure of maraging powder steel grade PS-H18K9M5TR (18%Ni+9%Co+5%Mo+1%Ti+1%Re+66%Fe). Scientific Herald of Uzhhorod University. Series “Physics”, (52), 46-55. https://doi.org/10.54919/2415-8038.2022.52.46-55 Search in Google Scholar

Nussupbek, Z.T., Bekenov, T.N., Sattinova, Z.K., Beisenbi, M.A., Tassybekov, Z.T. 2023. Substantiation of methods for calculation of traction forces redistribution indicators on modular front and rear wheels of the vehicle (4Х4). Transportation Engineering, 13, 100193. https://doi.org/10.1016/j.treng.2023.100193 Search in Google Scholar

Gierusz, W. 2016. Modelling the dynamics of ships with different propulsion for control purpose. Polish Maritime Research, 89(23), 31-36. Search in Google Scholar

Guimarães, D. A. 2009. Digital Transmission: A Simulation-Aided Introduction with VisSim/Comm. New York: Springer Verlag. https://doi.org/10.1007/978-3-642-01359-1 Search in Google Scholar

Leshchev, V.A., Naydyonov, А.I. 2021. Dynamic Method for Determining Resonant Frequencies of Torsional Vibrations of a Ship’s Propeller Shaft. A Scientific Look into the Future, 1(21), 15-26. Search in Google Scholar

Gorb, S., Popovskii, A., Budurov, M. 2023. Adjustment of speed governor for marine diesel generator engine. International Journal of GEOMATE, 25(109), 125-132. https://doi.org/10.21660/2023.109.m2312 Search in Google Scholar

Califano, A. 2010. Dynamic loads on marine propellers due to intermittent ventilation. Trondheim: NTNU. Search in Google Scholar

Kaplun, V., Chuenko, R., Makarevych, S. 2022. Investigation of energy parameters of a compensated asynchronous motor in the mode of repeated short-term starts. Machinery & Energetics, 13(3), 25-33. https://doi.org/10.31548/machenergy.13(3).2022.25-33 Search in Google Scholar

Ghaemi, M.H., Zeraatgar, H. 2022. Impact of propeller emergence on hull, propeller, engine, and fuel consumption performance in regular head waves. Polish Maritime Research, 29(4), 56-76. https://doi.org/10.2478/pomr-2022-0044 Search in Google Scholar

Kluczyk, M., Grządziela, A., Batur, T. 2022. Design and operational diagnostics of marine propellers made of polymer materials. Polish Maritime Research, 29(4), 115-122. https://doi.org/10.2478/pomr-2022-0049 Search in Google Scholar

Xiang, L., Yang, S.X., Gan, C.B. 2012. Torsional vibration of a shafting system under electrical disturbances. Shock and Vibration, 19, 1-11. Search in Google Scholar

Quang, P.K., Hung, P.V., Cong, N.C., Tung, T.X. 2022. Effects of rudder and blade pitch on hydrodynamic performance of marine propeller using CFD. Polish Maritime Research, 29(2), 55-63. https://doi.org/10.2478/pomr-2022-0017 Search in Google Scholar

Fleischer, K.P. 1973. Untersuchungen über das Zusammenwirken von Schiff und Propeller bei teilgetauchten Propellern. Forschungszentrum des Deutschen Schiffbaus Bericht, 130(73), 291-308. [in German]. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie