Uneingeschränkter Zugang

Optimal UV Quantity for a Ballast Water Treatment System for Compliance with Imo Standards


Zitieren

G. Altug, S. Gurun, M. Cardak, P. S. Ciftci, and S. Kalkan, “The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey,” Mar. Environ. Res., vol. 81, pp. 35–42, Oct. 2012, doi: 10.1016/j.marenvres.2012.08.005. Search in Google Scholar

L. J. Aridgides, M. A. Doblin, T. Berke, F. C. Dobbs, D. O. Matson, and L. A. Drake, “Multiplex PCR allows simultaneous detection of pathogens in ships’ ballast water,” Mar. Pollut Bull., vol. 48, no. 11, pp. 1096–1101, Jun. 2004, doi: 10.1016/j.marpolbul.2003.12.017. Search in Google Scholar

J. Chen, Y. Lin, J. Zhou Huo, M. Xia Zhang, and Z. Shang Ji, “Optimization of ship’s subdivision arrangement for offshore sequential ballast water exchange using a non-dominated sorting genetic algorithm,” Ocean Engineering, vol. 37, no. 11, pp. 978–988, Aug. 2010, doi: 10.1016/j.oceaneng.2010.03.012. Search in Google Scholar

I. Staffell and P. Balcombe, “How to decarbonise international shipping: options for fuels, technologies and policies,” Energy Convers. Manag., [Online]. Available: https://www.academia.edu/38669854/How_to_decarbonise_international_shipping_options_for_fuels_technologies_and_policies Search in Google Scholar

P. Van Hung, K.-S. Kim, L. Q. Tien, and N. M. Cuong, “Distribution of oil spill response capability through considering probable incident, environmental sensitivity and geographical weather in Vietnamese waters,” Journal of International Maritime Safety, Environmental Affairs, and Shipping, vol. 2, no. 1, pp. 31–41, Nov. 2018, doi: 10.1080/25725084.2018.1511240. Search in Google Scholar

G. Drillet et al., “Improvement in compliance of ships’ ballast water discharges during commissioning tests,” Mar. Pollut. Bull., vol. 191, p. 114911, Jun. 2023, doi: 10.1016/j. marpolbul.2023.114911. Search in Google Scholar

P. E. Neill and M. Arim, “Human Health Link to Invasive Species,” in Encyclopedia of Environmental Health, pp. 570–578, 2019, doi: 10.1016/B978-0-12-409548-9.11731-2. Search in Google Scholar

S. Gollasch, C. L. Hewitt, S. Bailey, and M. David, “Introductions and transfers of species by ballast water in the Adriatic Sea,” Mar. Pollut. Bull., vol. 147, pp. 8–15, Oct. 2019, doi: 10.1016/j. marpolbul.2018.08.054. Search in Google Scholar

O. Vidjak et al., “Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species,” Mar. Pollut. Bull., vol. 147, pp. 133–149, Oct. 2019, doi: 10.1016/j. marpolbul.2018.06.055. Search in Google Scholar

P. Van Hung, K.-S. Kim, and M. Lee, “Cooperative response to marine hazardous and noxious substances and oil spill incidents in the ASEAN region,” Australian Journal of Maritime & Ocean Affairs, vol. 11, no. 1, pp. 61–72, Jan. 2019, doi: 10.1080/18366503.2018.1559524. Search in Google Scholar

IMO, International Maritime Organization [IMO], 2004. International Convention for the Control and Management of Ships’ Ballast Water and Sediments. International Maritime Organization, London. [Online]. Available: http://www.imo.org/en/About/Conventions/ListofConventions/Pages/International-Convention-for-the-Control-and-Management-of-Ships%27-Ballast-Water-and-Sediments-(BWM).aspx Search in Google Scholar

G. Elidolu, S. I. Sezer, E. Akyuz, O. Arslan, and Y. Arslanoglu, “Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended evidential reasoning (ER) and rule-based Bayesian network (RBN) approach,” Reliab. Eng. Syst. Saf., vol. 231, p. 108975, Mar. 2023, doi: 10.1016/j.ress.2022.108975. Search in Google Scholar

D. K. Gray, I. C. Duggan, and H. J. Macisaac, “Can sodium hypochlorite reduce the risk of species introductions from diapausing invertebrate eggs in non-ballasted ships?,” Mar. Pollut. Bull., vol. 52, no. 6, pp. 689–695, Jun. 2006, doi: 10.1016/j.marpolbul.2005.11.001. Search in Google Scholar

P. P. Sangave, A. Mukherjee, and A. Pandit, “Ballast water treatment using hydrodynamic cavitation,” Nov. 2014. [Online]. Available: https://www.semanticscholar.org/paper/Ballast-Water-Treatment-Using-Hydrodynamic-Sangave-Mukherjee/ca3f5edcc2a28ba175b1a4c0093b70b49bb2a334 Search in Google Scholar

S. Rahman, “Implementation of ballast water management plan in ships through ballast water exchange system,” Procedia Eng., vol. 194, pp. 323–329, Jan. 2017, doi: 10.1016/j. proeng.2017.08.152. Search in Google Scholar

E. Tsolaki and E. Diamadopoulos, “Technologies for ballast water treatment: A review,” Journal of Chemical Technology & Biotechnology, vol. 85, no. 1, pp. 19–32, Jan. 2010, doi: 10.1002/jctb.2276. Search in Google Scholar

S. A. Bailey and H. Rajakaruna, “Optimizing methods to estimate zooplankton concentration based on generalized patterns of patchiness inside ballast tanks and ballast water discharges,” Ecol. Evol., vol. 7, no. 22, pp. 9689–9698, Nov. 2017, doi: 10.1002/ece3.3498. Search in Google Scholar

C. Grob and B. G. Pollet, “Regrowth in ship’s ballast water tanks: Think again!” Mar. Pollut. Bull., vol. 109, no. 1, pp. 46–48, Aug. 2016, doi: 10.1016/j.marpolbul.2016.04.061. Search in Google Scholar

V. Raţᾰ and L. Rusu, “Ballast water pollution risk assessment in the Black Sea,” in Mechanical Testing and Diagnosis, Jan. 2021, pp. 35–40. doi: 10.35219/mtd.2020.4.05. Search in Google Scholar

E. Briski et al., “Combining ballast water exchange and treatment to maximize prevention of species introductions to freshwater ecosystems,” Environ. Sci. Technol., vol. 49, no. 16, pp. 9566–9573, Aug. 2015, doi: 10.1021/acs.est.5b01795. Search in Google Scholar

A. Travizi et al., “Macrozoobenthos in the Adriatic Sea ports: Soft-bottom communities with an overview of non-indigenous species,” Mar. Pollut. Bull., vol. 147, pp. 159–170, Oct. 2019, doi: 10.1016/j.marpolbul.2019.01.016. Search in Google Scholar

P. Mozetič et al., “Phytoplankton diversity in Adriatic ports: Lessons from the port baseline survey for the management of harmful algal species,” Mar. Pollut. Bull., vol. 147, pp. 117–132, Oct. 2019, doi: 10.1016/j.marpolbul.2017.12.029. Search in Google Scholar

J.-H. Park, Y.-B. Sim, S.-Y. Kang, and S.-H. Kim, “Inactivation of indicating microorganisms in ballast water using chlorine dioxide,” Ecology and Resilient Infrastructure, vol. 5, no. 3, pp. 111–117, Sep. 2018, doi: 10.17820/ERI.2018.5.3.111. Search in Google Scholar

T. McCollin, G. Quilez-Badia, K. D. Josefsen, M. E. Gill, E. Mesbahi, and C. L. J. Frid, “Ship board testing of a deoxygenation ballast water treatment,” Mar. Pollut. Bull., vol. 54, no. 8, pp. 1170–1178, Aug. 2007, doi: 10.1016/j. marpolbul.2007.04.013. Search in Google Scholar

L. A. Drake, M. A. Doblin, and F. C. Dobbs, “Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm,” Mar. Pollut. Bull., vol. 55, no. 7, pp. 333–341, Jan. 2007, doi: 10.1016/j.marpolbul.2006.11.007. Search in Google Scholar

S. Vodyanitskaya et al., “Methods of decontamination of ship ballast water with polyguanidine disinfectant,” International Journal of Infectious Diseases, vol. 79, p. 77, Feb. 2019, doi: 10.1016/j.ijid.2018.11.195. Search in Google Scholar

E. Lakshmi, M. Priya, and V. S. Achari, “An overview on the treatment of ballast water in ships,” Ocean Coast Manag., vol. 199, p. 105296, Jan. 2021, doi: 10.1016/j.ocecoaman.2020.105296. Search in Google Scholar

M. N. Tamburri, K. Wasson, and M. Matsuda, “Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion,” Biol. Conserv., vol. 103, no. 3, pp. 331–341, Mar. 2002, doi: 10.1016/S0006-3207(01)00144-6. Search in Google Scholar

J.-T. Baek, J.-H. Hong, M. Tayyab, D.-W. Kim, P. R. Jeon, and C.-H. Lee, “Continuous bubble reactor using carbon dioxide and its mixtures for ballast water treatment,” Water Res., vol. 154, pp. 316–326, 2019, doi: https://doi.org/10.1016/j.watres.2019.02.014. Search in Google Scholar

IMO, “Globallast guidelines for development of a national ballast water management Strategy, 1997. Guidelines for preventing the introduction of unwanted organisms and pathogens from ships ballast waters and sediment discharges. Resolution A.868 (20).” 2004. Search in Google Scholar

G. H. Briton, B. Yao, and G. Ado, “Evaluation of the Abidjan lagoon pollution,” Journal of Applied Sciences and Environmental Management, vol. 11, no. 2, 2007, doi: 10.4314/jasem. v11i2.55030. Search in Google Scholar

J. Liu, P. Wang, G. Liu, J. Dai, J. Xiao, and H. Liu, “Study of the characteristics of ballast bed resistance for different temperature and humidity conditions,” Constr. Build. Mater., vol. 266, p. 121115, Jan. 2021, doi: 10.1016/j.conbuildmat.2020.121115. Search in Google Scholar

N. A. Salleh et al., “Pathogenic hitchhiker diversity on international ships’ ballast water at West Malaysia port,” Mar. Pollut. Bull., vol. 172, p. 112850, Nov. 2021, doi: 10.1016/j. marpolbul.2021.112850. Search in Google Scholar

G. Romanelli et al., “Ballast water management system: Assessment of chemical quality status of several ports in Adriatic Sea,” Mar. Pollut. Bull., vol. 147, pp. 86–97, Oct. 2019, doi: 10.1016/j.marpolbul.2017.12.030. Search in Google Scholar

M. R. First and L. A. Drake, “Life after treatment: detecting living microorganisms following exposure to UV light and chlorine dioxide,” J. Appl. Phycol., vol. 26, no. 1, pp. 227–235, Feb. 2014, doi: 10.1007/s10811-013-0049-9. Search in Google Scholar

Z. Manxia, L. Shengjie, T. Xiaojia, L. Xiang, and Z. Yimin, “Evaluation of micro-pore ceramic filtration and uv radiation combination on ballast water treatment,” in 2010 International Conference on Digital Manufacturing & Automation, pp. 670–673, Dec. 2010, doi: 10.1109/ICDMA.2010.374. Search in Google Scholar

P. P. Stehouwer, A. Buma, and L. Peperzak, “A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide,” Environ. Technol., vol. 36, no. 16, pp. 2094–2104, Aug. 2015, doi: 10.1080/09593330.2015.1021858. Search in Google Scholar

I. Rivas-Zaballos, L. Romero-Martínez, I. Moreno-Garrido, J. Moreno-Andrés, A. Acevedo-Merino, and E. Nebot, “UV-LEDs combined with persulfate salts as a method to inactivate microalgae in ballast water,” Journal of Water Process Engineering, vol. 51, p. 103361, Feb. 2023, doi: 10.1016/j. jwpe.2022.103361. Search in Google Scholar

J. Xiao, Y. Xu, L. Hu, and H. Wu, “Evaluating the treatment performance of filtration & real-time UV irradiation processes for bacteria and pathogens in fresh ballast water,” Reg. Stud. Mar. Sci., vol. 63, p. 102971, 2023, doi: https://doi.org/10.1016/j.rsma.2023.102971. Search in Google Scholar

N. F. Gray, “Chapter Thirty-Four - Ultraviolet disinfection,” in Microbiology of Waterborne Diseases (Second Edition), S. L. Percival, M. V Yates, D. W. Williams, R. M. Chalmers, and N. F. Gray, Eds., Second Edition. London: Academic Press, 2014, pp. 617–630. doi: https://doi.org/10.1016/B978-0-12-415846-7.00034-2. Search in Google Scholar

Y. Wang, L. Zou, L. Ma, Z. Zhao, and J. Guo, “A survey on control for Takagi-Sugeno fuzzy systems subject to engineering-oriented complexities,” Systems Science & Control Engineering, vol. 9, no. 1, pp. 334–349, 2021, doi: 10.1080/21642583.2021.1907259. Search in Google Scholar

“DESMI to manufacture ballast water treatment system under licence,” Pump Industry Analyst, vol. 2012, no. 8, pp. 12–13, 2012, doi: https://doi.org/10.1016/S1359-6128(12)70370-1. Search in Google Scholar

B. Sayinli, Y. Dong, Y. Park, A. Bhatnagar, and M. Sillanpää, “Recent progress and challenges facing ballast water treatment – A review,” Chemosphere, vol. 291, p. 132776, 2022, doi: https://doi.org/10.1016/j.chemosphere.2021.132776. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie