Uneingeschränkter Zugang

Application of Fuel Cold Energy in CO2 Bog Reliquefaction System on Ammonia-Powered CO2 Carrier


Zitieren

M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, and N. MacDowell, “Carbon capture and storage (CCS): the way forward,” Energy & Environmental Science, vol. 11, no. 5, pp. 1062-1176, 2018, doi: 10.1039/C7EE02342A. Search in Google Scholar

E. S. P. Aradóttir, H. Sigurdardóttir, B. Sigfússon, and E. Gunnlaugsson, “CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration,” Greenhouse Gases: Science and Technology, vol. 1, no. 2, pp. 105-118, 2011, doi: 10.1002/ghg.18. Search in Google Scholar

K. Onarheim, A. Mathisen, and A. Arasto, “Barriers and opportunities for application of CCS in Nordic industry‒A sectorial approach,” International Journal of Greenhouse Gas Control, vol. 36, pp. 93-105, 2015, doi: 10.1016/j.ijggc.2015.02.009. Search in Google Scholar

P. Mekala, M. Busch, D. Mech, R. S. Patel, and J. S. Sangwai, “Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration,” Journal of Petroleum Science and Engineering, vol. 122, pp. 1-9, 2014, doi: 10.1016/j. petrol.2014.08.017. Search in Google Scholar

G. Hegerland, T. Jørgensen, and J. O. Pande, “Liquefaction and handling of large amounts of CO2 for EOR,” Proc. Seventh International Conference on Greenhouse Gas Control Technologies, vol. 2, pp. 2541–2544, 2005, doi: 10.1016/B978-008044704-9/50369-4. Search in Google Scholar

D. E. Clark, E. H. Oelkers, I. Gunnarsson, B. Sigfússon, S. Ó. Snæbjörnsdóttir, E. S. Aradóttir, and S. R. Gíslason, “CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250°C,” Geochimica et Cosmochimica Acta, vol. 279, pp. 45-66, 2020, doi: 10.1016/j.gca.2020.03.039. Search in Google Scholar

H. Wu, R. S. Jayne, R. J. Bodnar, and R. M. Pollyea, “Simulation of CO2 mineral trapping and permeability alteration in fractured basalt: Implications for geologic carbon sequestration in mafic reservoirs,” International Journal of Greenhouse Gas Control, vol. 109, p. 103383, 2021, doi: 10.1016/j.ijggc.2021.103383. Search in Google Scholar

T. M. P. Ratouis, S. Ó. Snæbjörnsdóttir, M. J. Voigt, B. Sigfússon, G. Gunnarsson, E. S. Aradóttir, and V. Hjörleifsdóttir, “Carbfix 2: A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland,” International Journal of Greenhouse Gas Control, vol. 114, p. 103586, 2022, doi: 10.1016/j.ijggc.2022.103586. Search in Google Scholar

H. A. Baroudi, A. Awoyomi, K. Patchigolla, K. Jonnalagadda, and E. J. Anthony, “A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage,” Applied Energy, vol. 287, p. 116510, 2021, doi: 10.1016/j.apenergy.2021.116510. Search in Google Scholar

S. Trædal, J. H. J. Stang, I. Snustad, M. V. Johansson, and D. Berstad, “CO2 liquefaction close to the triple point pressure,” Energies, vol. 14, p. 8220, 2021, doi: 10.3390/en14248220. Search in Google Scholar

S. H. Jeon and M. S. Kim, “Compressor selection methods for multi-stage re-liquefaction system of liquefied CO2 transport ship for CCS,” Applied Thermal Engineering, vol. 82, pp. 360-367, 2015, doi: 10.1016/j.applthermaleng.2015.02.080. Search in Google Scholar

J. R. Gómez, M. R. Gómez, R. F. Garcia, and A. D. Catoira, “On board LNG reliquefaction technology: a comparative study,” Polish Maritime Research, vol. 21, pp. 77-88, 2013, doi: 10.2478/pomr-2014-0011. Search in Google Scholar

A. Alabdulkarem, Y. H. Wang, and R. Radermacher, “Development of CO2 liquefaction cycles for CO2 sequestration,” Applied Thermal Engineering, vol. 33, pp. 144-156, 2012, doi: 10.1016/j.applthermaleng.2011.09.027. Search in Google Scholar

K. Aliyon, M. Mehrpooya, and A. Hajinezhad, “Comparison of different CO2 liquefaction processes and exergoeconomic evaluation of integrated CO2 liquefaction and absorption refrigeration system,” Energy Conversion and Management, vol. 211, p. 112752, 2020, doi: 10.1016/j. enconman.2020.112752. Search in Google Scholar

L. E. Øi, N. Eldrup, U. Adhikari, M. H. Bentsen, J. L. Badalge, and S. Yang, “Simulation and cost comparison of CO2 liquefaction,” Energy Procedia, vol. 86, pp. 500-510, 2016, doi: 10.1016/j.egypro.2016.01.051. Search in Google Scholar

Y. Sen, H. You, S. Lee, C. Huh, and D. Chang, “Evaluation of CO2 liquefaction processes for ship-based carbon capture and storage (CCS) in terms of life cycle cost (LCC) considering availability,” International Journal of Greenhouse Gas Control, vol. 35, pp. 1-12, 2015, doi: 10.1016/j.ijggc.2015.01.006. Search in Google Scholar

S. Decarre, J. Berthiaud, N. Butin, and J. L. Guillaume-Combecave, “CO2 maritime transportation,” International Journal of Greenhouse Gas Control, vol. 4, no. 5, pp. 857-864, 2010, doi: 10.1016/j.ijggc.2010.05.005. Search in Google Scholar

L. Duan, X. Chen, and Y. Yang, “Study on a novel process for CO2 compression and liquefaction integrated with the refrigeration process,” International Journal of Energy Research, vol. 37, pp. 1453-1464, 2013, doi: 10.1002/er.2951. Search in Google Scholar

U. Zahid, J. An, U. Lee, S. P. Choi, and C. Han, “Techno- economic assessment of CO2 liquefaction for ship transportation,” Greenhouse Gases: Science and Technology, vol. 4, no. 6, pp. 734-749, 2015, doi: 10.1002/ghg.1439. Search in Google Scholar

A. Awoyomi, K. Patchigolla, and E. J. Anthony, “CO2/SO2 emission reduction in CO2 shipping infrastructure,” International Journal of Greenhouse Gas Control, vol. 88, pp. 57-70, 2019, doi: 10.1016/j.ijggc.2019.05.011. Search in Google Scholar

H. J. Sang and S. K. Min, “Effects of impurities on re-liquefaction system of liquefied CO2 transport ship for CCS,” International Journal of Greenhouse Gas Control, vol. 43, no. 2, pp. 225-232, 2015, doi: 10.1016/j.ijggc.2015.10.011. Search in Google Scholar

H. Deng, S. Roussanaly, and G. Skaugen, “Techno-economic analyses of CO2 liquefaction: Impact of product pressure and impurities,” International Journal of Refrigeration, vol. 103, pp. 301-315, 2019, doi: 10.1016/j.ijrefrig.2019.04.011. Search in Google Scholar

Y. Lee, K. H. Baek, S. Lee, K. Cha, and C. Han, “Design of boil-off CO2 re-liquefaction processes for a large-scale liquid CO2 transport ship,” International Journal of Greenhouse Gas Control, vol. 67, pp. 93-102, 2017, doi: 10.1016/j. ijggc.2017.10.008. Search in Google Scholar

H. A. Muhammad, C. Roh, J. Cho, Z. Rehman, H. Sultan, Y. J. Baik, and B. Lee, “A comprehensive thermodynamic performance assessment of CO2 liquefaction and pressurization system using a heat pump for carbon capture and storage (CCS) process,” Energy Conversion and Management, vol. 206, p. 112489, 2020, doi: 10.1016/j.enconman.2020.112489. Search in Google Scholar

J. Kropiwnicki, “Application of Stirling engine type alpha powered by the recovery energy on vessels,” Polish Maritime Research, vol. 27, no. 1, pp. 96-106, 2020, doi: 10.2478/pomr-2020-0010. Search in Google Scholar

H. P. Nguyen, A. T. Hoang, S. Nizetic, X. P. Nguyen, A. T. Le, C. N. Luong, V. D. Chu, and V. V. Pham, “The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review,” International Transactions on Electrical Energy Systems, vol. 31, E12580, 2020, doi: 10.1002/2050-7038.12580. Search in Google Scholar

L. C. Law, B. Foscoli, E. Mastorakos, and S. Evans, “A comparison of alternative fuels for shipping in terms of lifecycle energy and cost,” Energies, vol. 14, no. 24, p. 8502, 2021, doi: 10.3390/en14248502. Search in Google Scholar

N. R. Sharma, D. Dimitrios, A. I. Olcer, and N. Nikitakos, “LNG a clean fuel ‒ the underlying potential to improve thermal efficiency,” Journal of Marine Engineering and Technology, vol. 21, pp. 111-124, 2020, doi: 10.1080/20464177.2020.1827491. Search in Google Scholar

M. Comotti and S. Frigo, “Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines,” International Journal of Hydrogen Energy, vol. 40, no. 33, pp. 10673-10686, 2015, doi: 10.1016/j.ijhydene.2015.06.080. Search in Google Scholar

S. Frankl, S. Gleis, S. Karmann, M. Prager and G. Wachtmeister, “Investigation of ammonia and hydrogen as CO2-free fuels for heavy duty engines using a high pressure dual fuel combustion process,” International Journal of Engine Research, vol. 22, no. 10, pp. 3196-3208, 2021, doi: 10.1177/1468087420967873. Search in Google Scholar

C. Mounaïm-Rousselle, P. Bréquigny, C. Dumand, and S. Houillé, “Operating limits for ammonia fuel spark-ignition engine,” Energies, vol. 14, no. 14, p. 4141, 2021, doi: 10.3390/en14144141. Search in Google Scholar

A. Valera-Medina, F. Amer-Hatem, A. K. Azad, I. C. Dedoussi, M. D. Joannon, R. X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. McGowan, C. Mounaim-Rouselle, A. Ortiz-Prado, A. Ortiz-Valera, I. Rossetti, B. Shu, M. Yehia, H. Xiao, and M. Costa, “Review on ammonia as a potential fuel: From synthesis to economics,” Energy and Fuels, vol. 35, pp. 6964-7029, 2021, doi: 10.1021/acs.energyfuels.0c03685. Search in Google Scholar

H. Li and J. Yan, “Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes,” Applied Energy, vol. 86, no. 6, pp. 826-836, 2009, doi: 10.1016/j. apenergy.2008.05.018. Search in Google Scholar

U. Lee, S. Yang, Y. S. Jeong, Y. Lim, C. S. Lee, and C. Han, “Carbon dioxide liquefaction process for ship transportation,” Industrial and Engineering Chemistry Research, vol. 51, no. 46, pp. 15122-15131, 2012, doi: 10.1021/ie300431z. Search in Google Scholar

F. Engel and A. Kather, “Improvements on the liquefaction of a pipeline CO2 stream for ship transport,” International Journal of Greenhouse Gas Control, vol. 72, pp. 214-221, 2018, doi: 10.1016/j.ijggc.2018.03.010. Search in Google Scholar

Y. Shi, J. Shen, D. Qiu, and T. Qin, “Thermal analysis of type C independent tank,” Ships and Ocean Engineering, vol. 36, no. 3, p. 5, 2020, doi: 10.14056/j.cnki.naoe.2020.03.001. Search in Google Scholar

B. Y. Yoo, “The development and comparison of CO2 BOG re-liquefaction processes for LNG fueled CO2 carriers,” Energy, vol. 127, pp. 186-197, 2017, doi: 10.1016/j.energy.2017.03.073. Search in Google Scholar

Y. Li, B. Li, F. Deng, Q. Yang, and B. Zhang, “Research on the application of cold energy of largescale LNG-powered container ships to refrigerated containers,” Polish Maritime Research, vol. 28, no. 4, pp. 107-121, 2022, doi: 10.2478/pomr-2021-0053. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie