Uneingeschränkter Zugang

Dynamic Analysis and Experiment of Underactuated Double-Pendulum Anti-Swing Device for Ship-Mounted Jib Cranes


Zitieren

1. E. M. Abdel-Rahman, A. H. Nayfeh, Z. N. Masoud, “Dynamics and control of cranes: A review,” Journal of Vibration and Control, vol. 9, no. (7), pp. 863‒908, 2003, doi: 10.1177/1077546303009007007. Open DOISearch in Google Scholar

2. Chuanzhi Zhu, Guoping Miu, Theory of ships motion on waves. Shanghai: Shanghai Jiaotong University Press, 2019. Search in Google Scholar

3. Shenghai Wang, Zhaopeng Ren, Guoliang Jin, Haiquan Chen, “Modeling and Analysis of Offshore Crane Retrofitted with Cable-Driven Inverted Tetrahedron Mechanism,” IEEE Access, vol. 9, pp. 86132‒86143, 2021, doi:10.1109/ACCESS.2021.3063792 Search in Google Scholar

4. 10.1109/ACCESS.2021.3063792. Search in Google Scholar

5. W. Z. Schulz, M. Musatow, C. Jiang, et al., Skin-to-skin replenishment. Proceedings of the ASNE Symposium on Expeditionary Force Projection, 2008. Search in Google Scholar

6. M. I. Solihin, A. Legowo, R. Akmeliawati, et al., Robust PID anti-swing control of automatic gantry crane based on Kharitonov’s stability. In: 2009 4th IEEE Conference on Industrial Electronics and Applications. IEEE, pp. 275–280, 2009.10.1109/ICIEA.2009.5138205 Search in Google Scholar

7. M. Adeli, H. Zarabadipour, S. H. Zarabadi, M. A. Shoorehdeli, Anti-swing control for a double-pendulum-type overhead crane via parallel distributed fuzzy LQR controller combined with genetic fuzzy rule set selection. In: 2011 IEEE International Conference on Control System, Computing and Engineering. IEEE, pp. 306–311, 2011.10.1109/ICCSCE.2011.6190542 Search in Google Scholar

8. Q. H. Ngo, N. P. Nguyen, C. N. Nguyen, T. H. Tran, Q. P. Ha, “Fuzzy sliding mode control of an offshore container crane,” Ocean Eng., vol. 140, pp. 125–134, 2017, doi: 10.1016/j.oceaneng.2017.05.019. Open DOISearch in Google Scholar

9. Y. Qian, Y. Fang, B. Lu, “Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances,” Mech. Syst. Signal Process., vol. 114, pp. 556–570, 2018, doi: 10.1016/j.ymssp.2018.05.009. Open DOISearch in Google Scholar

10. G.-H. Kim, P.-T. Pham, Q. H. Ngo, Q. C. Nguyen, “Neural network-based robust anti-sway control of an industrial crane subjected to hoisting dynamics and uncertain hydrodynamic forces,” Int. J. Control Autom. Syst., vol. 19, pp. 1953‒1961, 2021, doi: 10.1007/s12555-020-0333-9. Open DOISearch in Google Scholar

11. R. Buczkowski and B. Żyliński, “Finite element fatigue analysis of unsupported crane,” Polish Marit. Res., vol. 28, no. 1, 2021, doi: 10.2478/pomr-2021-0012. Open DOISearch in Google Scholar

12. A. Aksjonov, V. Vodovozov, and E. Pellenkov, “Three-dimensional crane modelling and control using Euler-Lagrange state-space approach and anti-swing fuzzy logic,” Electr., Control Commun. Eng., vol. 9, no. 1, pp. 5‒13, Dec. 2015, doi: 10.1515/ecce-2015-0006. Open DOISearch in Google Scholar

13. Y. G. Sun, H. Y. Qiang, J. Q. Xu, and D. S. Dong, “The nonlinear dynamics and anti-sway tracking control for offshore container crane on a mobile harbor,” J. Mar. Sci. Technol. - Taiwan, Process., vol. 25, no. 6, pp. 656‒665, 2017, doi: 10.6119/JMST-017-1226-05. Open DOISearch in Google Scholar

14. J. Huang, E. Maleki, W. Singhose, “Dynamics and swing control of mobile boom cranes subject to wind disturbances,” IET Control Theory and Applications, vol. 7, no. 9, pp. 1187‒1195, 2013, doi: 10.1049/iet-cta.2012.0957. Open DOISearch in Google Scholar

15. R. Miranda-Colorado, “Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering,” Nonlinear Dynamics, vol. 104, no. 4, pp.1‒16r, 2021, doi: 10.1007/s11071-021-06443-x. Open DOISearch in Google Scholar

16. K. J. Jensen, M. K. Ebbesen, M. R. Hansen, “Anti-swing control of a hydraulic loader crane with a hanging load,” Mechatronics, vol. 77, 2021, doi: 10.1016/j.mechatronics.2021.102599. Open DOISearch in Google Scholar

17. H. T. Shi, J. Q. Huang, X. Bai, X. Huang, J. Sun, “Nonlinear Anti-swing Control of Underactuated Tower Crane Based on Improved Energy Function,” Int. J. Control Autom. Syst., vol. 19, pp. 3967‒3982, 2021, doi: 10.1007/s12555-020-0292-1. Open DOISearch in Google Scholar

18. H. Y. Qiang, Y. G. Sun, J. C. Lyu, D. S. Dong, “Anti-Sway and Positioning Adaptive Control of a Double-Pendulum Effect Crane System with Neural Network Compensation,” Front. Robot. AI, vol. 8, 2021, doi: 10.3389/frobt.2021.639734.809238933954163 Open DOISearch in Google Scholar

19. Zhengru Ren, A. S. Verma, B. Ataei, K. H. Halse, H. P. Hildre, “Model-free anti-swing control of complex-shaped payload with offshore floating cranes and a large number of lift wires,” Ocean Engineering, vol. 228, pp. 1‒13, 2021, doi: 10.1016/j.oceaneng.2021.108868. Open DOISearch in Google Scholar

20. Haiquan Chen, Guoliang Jin, Yang Ji, Anqi Niu, Shenghai Wang, Yuqing Sun, “Simulation and experimental research on constant tension control of traction cable-type anti-swing device for ship-mounted cranes,” Shipbuilding of China, vol. 62, no. 2, pp. 211‒223, 2021. Search in Google Scholar

21. Shenghai Wang, Junjie Wu, Haiquan Chen, Yang Ji, Yuqing Sun, “Dynamic analysis and experiment of the mechanical anti-swing device for ship-mounted cranes,” Journal of Harbin Engineering University, vol. 40, no. 11, pp. 1858-1864, 2019. Search in Google Scholar

22. J. Ginsberg, Engineering Dynamics. New York, NY, USA: Cambridge Univ. Press, pp. 99‒157, 2008. Search in Google Scholar

23. L. J. Love, J. F. Jansen, F. G. Pin, Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems, UNT Digital Laboratory, 2003, doi: 10.2172/885873. Open DOISearch in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie