Uneingeschränkter Zugang

On the Use of Selected 4th Generation Nuclear Reactors in Marine Power Plants


Zitieren

1. C. Sui, D. Stapersma, K. Visser, P. de Vos, and Y. Ding, “Energy effectiveness of ocean-going cargo ship under various operating conditions,” Ocean Eng., vol. 190, no. 145, p. 106473, 2019, doi: 10.1016/j.oceaneng.2019.106473.10.1016/j.oceaneng.2019.106473 Search in Google Scholar

2. M. Dzida, “On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine, at the main engine - steam turbine mode of cooperation,” Polish Marit. Res., vol. 16, no. 1, pp. 47–52, Jan. 2009, doi: 10.2478/v10012-008-0010-z.10.2478/v10012-008-0010-z Search in Google Scholar

3. Ł. Breńkacz, “The Experimental Identification of the Dynamic Coefficients of two Hydrodynamic Journal Bearings Operating at Constant Rotational Speed and Under Nonlinear Conditions,” Polish Marit. Res., vol. 24, no. 4, pp. 108–115, Dec. 2017, doi: 10.1515/pomr-2017-0142.10.1515/pomr-2017-0142 Search in Google Scholar

4. Ł. Breńkacz, G. Żywica, M. Drosińska-Komor, and N. Szewczuk-Krypa, “The Experimental Determination of Bearings Dynamic Coefficients in a Wide Range of Rotational Speeds, Taking into Account the Resonance and Hydrodynamic Instability,” in Dynamical Systems in Applications, vol. 249, J. Awrejcewicz, Ed. Cham: Springer International Publishing, 2018, pp. 13–24.10.1007/978-3-319-96601-4_2 Search in Google Scholar

5. S. Y. Gómez and D. Hotza, “Current developments in reversible solid oxide fuel cells,” Renew. Sustain. Energy Rev., vol. 61, pp. 155–174, 2016, doi: 10.1016/j.rser.2016.03.005.10.1016/j.rser.2016.03.005 Search in Google Scholar

6. N. Szewczuk-Krypa, M. Drosińska-Komor, J. Głuch, and L. Breńkacz, “Comparison Analysis of Selected Nuclear Power Plants Supplied with Helium from High-Temperature Gas-Cooled Reactor,” Polish Marit. Res., vol. 25, no. s1, pp. 204–210, 2018, doi: 10.2478/pomr-2018-0043.10.2478/pomr-2018-0043 Search in Google Scholar

7. D. F. Skripnuk, I. O. Iliyushchenko, S. V Kulik, and M. M. Stepanova, “Analysis of the current state of the Northern Sea Route and the potential development of the icebreaker fleet,” IOP Conf. Ser. Earth Environ. Sci., vol. 539, no. 1, p. 012129, Jul. 2020, doi: 10.1088/1755-1315/539/1/012129.10.1088/1755-1315/539/1/012129 Search in Google Scholar

8. I. Gospić, I. Glavan, I. Poljak, and V. Mrzljak, “Energy, economic and environmental effects of the marine diesel engine trigeneration energy systems,” J. Mar. Sci. Eng., vol. 9, no. 7, 2021, doi: 10.3390/jmse9070773.10.3390/jmse9070773 Search in Google Scholar

9. L. O. Freire and D. A. De Andrade, “Historic survey on nuclear merchant ships,” Nucl. Eng. Des., vol. 293, pp. 176–186, 2015, doi: 10.1016/j.nucengdes.2015.07.031.10.1016/j.nucengdes.2015.07.031 Search in Google Scholar

10. T. Ishida and T. Yoritsune, “Effects of ship motions on natural circulation of deep sea research reactor DRX,” Nucl. Eng. Des., vol. 215, no. 1–2, pp. 51–67, Jun. 2002, doi: 10.1016/S0029-5493(02)00041-9.10.1016/S0029-5493(02)00041-9 Search in Google Scholar

11. H. Iida, Y. Ishizaka, Y.-C. Kim, and C. Yamaguchi, “Design Study of the Deep-Sea Reactor X,” Nucl. Technol., vol. 107, no. 1, pp. 38–48, Jul. 1994, doi: 10.13182/NT94-A34996.10.13182/NT94-A34996 Search in Google Scholar

12. B. H. Yan, “Review of the nuclear reactor thermal hydraulic research in ocean motions,” Nucl. Eng. Des., vol. 313, pp. 370–385, 2017, doi: 10.1016/j.nucengdes.2016.12.041.10.1016/j.nucengdes.2016.12.041 Search in Google Scholar

13. K. Lee, K. Lee, J. Ik, Y. Hoon, and P. Lee, “A new design concept for offshore nuclear power plants with enhanced safety features,” Nucl. Eng. Des., vol. 254, pp. 129–141, 2013, doi: 10.1016/j.nucengdes.2012.09.011.10.1016/j.nucengdes.2012.09.011 Search in Google Scholar

14. N. Isshiki, “Effects of heaving and listing upon thermo-hydraulic performance and critical heat flux of water-cooled marine reactors,” Nucl. Eng. Des., vol. 4, no. 2, pp. 138–162, 1966, doi: 10.1016/0029-5493(66)90088-4.10.1016/0029-5493(66)90088-4 Search in Google Scholar

15. H. Ōi and K. Tanigaki, “The ship design of the First Nuclear Ship in Japan,” Nucl. Eng. Des., vol. 10, no. 2, pp. 211–219, Jun. 1969, doi: 10.1016/0029-5493(69)90040-5.10.1016/0029-5493(69)90040-5 Search in Google Scholar

16. Y. Chikazawa, K. Aizawa, T. Shiraishi, and H. Sakata, “Experimental demonstration of flow diodes applicable to apassive decay heat removal system for sodium-cooled reactors,” J. Nucl. Sci. Technol., vol. 46, no. 4, pp. 321–330, 2009, doi: 10.1080/18811248.2007.9711537.10.1080/18811248.2007.9711537 Search in Google Scholar

17. “Romawa B.V. The Nuclear Gas Turbine. The NEREUS project, Huzarenlaan 15, 7215 ED, Joppe, The Netherlands, Leaflet.,” no. April, p. 7215, 2004. Search in Google Scholar

18. D. A. Arostegui and M. Holt, “Advanced Nuclear Reactors : Technology Overview and Current Issues Advanced Nuclear Reactors : Technology Overview and Current Issues” Congressional Research. Service. Report R45706, Washington D.C.,” 2019. Search in Google Scholar

19. IAEA, “Nuclear power reactors in the world, 2020 edition,” At. Energy, no. 1, p. 81, 2020. Search in Google Scholar

20. Significant Ships, “Annual Report 2018,” 2018. Search in Google Scholar

21. J. M. Kendall, “IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies ICTP – Trieste, Italy, 18-30 May 2008 Gas-Cooled Reactors – Technology Options, Operating Research Reactors and,” no. May, 2008. Search in Google Scholar

22. M. Przybylski and J. Głuch, “Selected design and construction aspects of supercritical steam generators for high temperature reactors,” Arch. Energ., vol. XLII, no. 2, pp. 113–120, 2012. Search in Google Scholar

23. D. L. Moses, Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP), no. August. OAK RIDGE NATIONAL LABORATORY, 2010.10.2172/1027406 Search in Google Scholar

24. A. C. Kadak et al., “Modular Pebble Bed Reactor, Project University Research Consortium, Annual Report,” 2000. Search in Google Scholar

25. A. Błaszczyk, J. Głuch, and A. Gardzilewicz, “Operating and economic conditions of cooling water control for marine steam turbine condensers,” Polish Marit. Res., vol. 18, no. 3, pp. 48–54, 2011, doi: 10.2478/v10012-011-0017-8.10.2478/v10012-011-0017-8 Search in Google Scholar

26. G. Żywica, T. Z. Kaczmarczyk, Ł. Breńkacz, M. Bogulicz, A. Andrearczyk, and P. Bagiński, “Investigation of dynamic properties of the microturbine with a maximum rotational speed of 120 krpm-predictions and experimental tests,” J. Vibroengineering, vol. 22, no. 2, pp. 298–312, 2020, doi: 10.21595/jve.2019.20816.10.21595/jve.2019.20816 Search in Google Scholar

27. Ł. Breńkacz, G. Żywica, and M. Bogulicz, “Selection of the oil-free bearing system for a 30 kW ORC microturbine,” J. Vibroengineering, vol. 21, no. 2, pp. 318–330, Mar. 2019, doi: 10.21595/jve.2018.19980.10.21595/jve.2018.19980 Search in Google Scholar

28. K. Dominiczak, M. Drosińska-Komor, R. Rządkowski, and J. Głuch, “Optimisation of turbine shaft heating process under steam turbine run-up conditions,” Arch. Thermodyn., vol. 41, no. 4, pp. 255–268, 2020, doi: 10.24425/ather.2020.135863. Search in Google Scholar

29. B. Łuniewicz and K. Kietliński, “ALSTOM POWER experience i large steam turbine moderisation, Polish Academy of Sciences, ‘Basic problems of energetical machinery,’” 2003. Search in Google Scholar

30. T. Kowalczyk, J. Badur, and P. Ziółkowski, “Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads,” Energy, vol. 206, Sep. 2020, doi: 10.1016/j.energy.2020.118072.10.1016/j.energy.2020.118072 Search in Google Scholar

31. P. Ziółkowski, T. Kowalczyk, S. Kornet, and J. Badur, “On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat,” Energy Convers. Manag., vol. 146, pp. 158–173, Aug. 2017, doi: 10.1016/j.enconman.2017.05.028.10.1016/j.enconman.2017.05.028 Search in Google Scholar

32. P. Ziółkowski, J. Badur, and P. J. Ziółkowski, “An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski’s idea,” Energy, vol. 185, pp. 763–786, 2019, doi: 10.1016/j.energy.2019.06.160.10.1016/j.energy.2019.06.160 Search in Google Scholar

33. P. Ziólkowski et al., “Comprehensive thermodynamic analysis of steam storage in a steam cycle in a different regime of work: A zero-dimensional and three-dimensional approach,” J. Energy Resour. Technol., vol. 143, no. 10, pp. 1–27, Aug. 2021, doi: 10.1115/1.4052249.10.1115/1.4052249 Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie