Uneingeschränkter Zugang

Influence of solid particle contamination on the wear process in water lubricated marine strut bearings with NBR and PTFE bushes

   | 01. Jan. 2022

Zitieren

1. Author’s Archive, ‘Propeller shaft strut bearings’. Search in Google Scholar

2. W. Dai, B. Kheireddin, H. Gao, and H. Liang, ‘Roles of nanoparticles in oil lubrication’, Tribol. Int., vol. 102, pp. 88–98, 2016, doi: 10.1016/j.triboint.2016.05.020.10.1016/j.triboint.2016.05.020 Search in Google Scholar

3. Z. J. Zhang, D. Simionesie, and C. Schaschke, ‘Graphite and hybrid nanomaterials as lubricant additives’, Lubricants, vol.2, no. 2, pp. 44–65, 2014, doi: 10.3390/lubricants2020044.10.3390/lubricants2020044 Search in Google Scholar

4. A. Barszczewska, E. Piątkowska, and W. Litwin, ‘Selected Problems of Experimental Testing Marine Stern Tube Bearings’, Polish Marit. Res., vol. 26, no. 2, pp. 142–154, 2019, doi: 10.2478/pomr-2019-0034.10.2478/pomr-2019-0034 Search in Google Scholar

5. A. Barszczewska, ‘Experimental Research on Insufficient Water Lubrication of Marine Stern Tube Journal Bearing with Elastic Polymer Bush’, Polish Marit. Res., vol. 27, no.4, pp. 91–102, 2020, doi: 10.2478/pomr-2020-0069.10.2478/pomr-2020-0069 Search in Google Scholar

6. N. Vulić, K. Bratić, B. Lalić, and L. Stazić, ‘Implementing Simulationx in the Modelling of Marine Shafting Steady State Torsional Vibrations’, Polish Marit. Res., vol. 28, no.2, pp. 63–71, Jun. 2021, doi: 10.2478/pomr-2021-0022.10.2478/pomr-2021-0022 Search in Google Scholar

7. M. Moschopoulos, G. N. Rossopoulos, and C. I. Papadopoulos, ‘Journal Bearing Performance Prediction Using Machine Learning and Octave-Band Signal Analysis of Sound and Vibration Measurements’, Polish Marit. Res., vol. 28, no. 3, pp. 137–149, 2021, doi: 10.2478/pomr-2021-0041.10.2478/pomr-2021-0041 Search in Google Scholar

8. A. Ursolov, Y. Batrak, and W. Tarelko, ‘Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition’, Polish Marit. Res., vol. 26, no. 3, pp. 172–180, 2019, doi: 10.2478/pomr-2019-0058.10.2478/pomr-2019-0058 Search in Google Scholar

9. H. Yang, J. Li, and X. Li, ‘Calculation of the Dynamic Characteristics of Ship’s Aft Stern Tube Bearing Considering Journal Deflection’, Polish Marit. Res., vol. 27, no. 1, pp. 107–115, 2020, doi: 10.2478/pomr-2020-0011.10.2478/pomr-2020-0011 Search in Google Scholar

10. J. Duchowski, ‘Examination of journal bearing filtration requirements’, Lubr. Eng., vol. 09, pp. 1–9, 1998, https://www.researchgate.net/publication/287750536_Examination_of_journal_bearing_filtration_requirements. Search in Google Scholar

11. J. Duchowski, ‘Filtration requirements for journal bearings exposed to different contaminant levels’, Lubr. Eng., vol.06, no. July, pp. 34–39, 2002, https://www.researchgate.net/publication/287750720_Filtration_requirements_for_journal_bearings_exposed_to_different_contaminant_levels. Search in Google Scholar

12. D. Hargreaves and S. C. Sharma, ‘Effects of solid contaminants on journal bearing performance’, Proc. 2nd World Tribol. Congr. 3-7 Sept. 2001, pp. 237–240, 2001, https://figshare.com/articles/conference_contribution/Effects_of_solid_contaminants_on_journal_bearing_performance/13463030/1. Search in Google Scholar

13. M. M. Khonsari and E. R. Booser, ‘Effect of contamination on the performance of hydrodynamic bearings’, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 220, no. 5, pp. 419–428, 2006, doi: 10.1243/13506501J00705.10.1243/13506501J00705 Search in Google Scholar

14. A. Dadouche and M. J. Conlon, ‘Operational performance of textured journal bearings lubricated with a contaminated fluid’, Tribol. Int., vol. 93, pp. 377–389, 2016, 10.1016/j.triboint.2015.09.022.10.1016/j.triboint.2015.09.022 Search in Google Scholar

15. S. M. Park, G. H. Kim, and Y. Z. Lee, ‘Investigation of the wear behaviour of polyacetal bushings by the inflow of contaminants’, Wear, vol. 271, no. 9–10, pp. 2193–2197, 2011, https://doi.org/10.1016/j.wear.2010.12.033.10.1016/j.wear.2010.12.033 Search in Google Scholar

16. L. Peña-Parás et al., ‘Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding’, Tribol. Int., vol. 119, no. August 2017, pp. 88–98, 2018, doi: 10.1016/j.triboint.2017.09.009.10.1016/j.triboint.2017.09.009 Search in Google Scholar

17. A. Akchurin, R. Bosman, P. M. Lugt, and M. van Drogen, ‘Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts’, Tribol. Lett., vol. 63, no. 2, pp. 1–14, 2016, https://doi.org/10.1007/s11249-016-0701-z.10.1007/s11249-016-0701-z Search in Google Scholar

18. A. Akchurin, R. Bosman, and P. M. Lugt, ‘Generation of wear particles and running-in in mixed lubricated sliding contacts’, Tribol. Int., vol. 110, no. February, pp. 201–208, 2017, https://doi.org/10.1016/j.triboint.2017.02.019.10.1016/j.triboint.2017.02.019 Search in Google Scholar

19. A. Akchurin, R. Bosman, and P. M. Lugt, ‘A Stress-Criterion-Based Model for the Prediction of the Size of Wear Particles in Boundary Lubricated Contacts’, Tribol. Lett., vol. 64, no. 3, pp. 1–12, 2016, https://doi.org/10.1007/s11249-016-0772-x.10.1007/s11249-016-0772-x Search in Google Scholar

20. G. Pintaude, ‘Characteristics of Abrasive Particles and Their Implications on Wear’, New Tribol. Ways, no. April 2011, 2012, https://www.researchgate.net/profile/Giuseppe-Pintaude/publication/221912389_Characteristics_of_Abrasive_Particles_and_Their_Implications_on_Wear/links/00b49525ef1357bd1d000000/Characteristics-of-Abrasive-Particles-and-Their-Implications-on-Wear.pdf.10.5772/14618 Search in Google Scholar

21. C. Q. Yuan, Z. Peng, X. C. Zhou, and X. P. Yan, ‘The characterization of wear transitions in sliding wear process contaminated with silica and iron powder’, Tribol. Int., vol.38, no. 2, pp. 129–143, 2005, 10.1016/j.triboint.2004.06.007.10.1016/j.triboint.2004.06.007 Search in Google Scholar

22. A. Ya and T. Yu, ‘Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data’, Proc. SPIE, vol. 9638, pp. 1–12, 2015, https://doi.org/10.1117/12.2193905.10.1117/12.2193905 Search in Google Scholar

23. E. Szymczak and D. Burska, ‘Distribution of Suspended Sediment in the Gulf of Gdansk off the Vistula River mouth (Baltic Sea, Poland)’, IOP Conf. Ser. Earth Environ. Sci., vol. 221, no. 1, p. 012053, Mar. 2019, doi: 10.1088/1755-1315/221/1/012053.10.1088/1755-1315/221/1/012053 Search in Google Scholar

24. M. Damrat, A. Zaborska, and M. Zajaczkowski, ‘Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea)’, Oceanology, vol. 55, no. 4, pp. 937–950, 2013, doi:10.5697/oc.55-4.937.10.5697/oc.55-4.937 Search in Google Scholar

25. Geological Institute and Geology Institute, ‘Lithology and mineral composition of sediments from the bottom of the Gdańsk Basin’, vol. 313, no. 2, 1980, https://gq.pgi.gov.pl/article/viewFile/8797/pdf_830 (in Polish). Search in Google Scholar

26. T. Leipe and B. Sea, ‘The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material’, Baltica, vol. 16, pp. 31–36, 2003, https://gamtostyrimai.lt/uploads/publications/docs/211_37972ec38c101346e9b8223cb576dc8b.pdf. Search in Google Scholar

27. Y. Solomonov, Experimental investigation of tribological characteristics of water-lubricated bearings materials on a pin-on-disc test rig, The University of Adelaide, School of Mechanical Engineering, Master of Philosophy Thesis, April 2014, https://digital.library.adelaide.edu.au/dspace/bitstream/2440/84676/8/02whole.pdf, https://hdl.handle.net/2440/84676. Search in Google Scholar

28. C. L. Dong, C. Q. Yuan, X. Q. Bai, Y. Yang, and X. P. Yan, ‘Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions’, Wear, vol. 332–333, pp. 1012–1020, 2015, 10.1016/j.wear.2015.01.009. Search in Google Scholar

29. C. Yuan, Z. Guo, W. Tao, C. Dong, and X. Bai, ‘Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys’, Wear, vol. 384–385, pp. 185–191, Aug. 2017, doi: 10.1016/j.wear.2017.02.019.10.1016/j.wear.2017.02.019 Search in Google Scholar

30. T. Chang, Z. Guo, and C. Yuan, ‘Study on influence of Koch snowflake surface texture on tribological performance for marine water-lubricated bearings’, Tribol. Int., vol. 129, pp. 29–37, 2019, doi: 10.1016/j.triboint.2018.08.015.10.1016/j.triboint.2018.08.015 Search in Google Scholar

31. Z. Wu, C. Sheng, Z. Guo, F. Li, ‘Equivalent Calculate of the Equivalent Radius and the Tribological Performance of the Marine Water-Lubricated Bearing’, Mocaxue Xuebao/Tribology, vol. 37, no. 5, pp. 656–662, 2017, doi: 10.16078/j.tribology.2017.05.013. Search in Google Scholar

32. Z. Jia, Z. Guo, C. Yuan, ‘Effect of Material Hardness on Water Lubrication Performance of Thermoplastic Polyurethane under Sediment Environment’, J. Mater. Eng. Perform., vol. 30, no. 10, pp. 7532–7541, 2021, doi: 10.1007/s11665-021-05912-z.10.1007/s11665-021-05912-z Search in Google Scholar

33. X. Liang, Z. Guo, J. Tian, C. Yuan, ‘Development of modified polyacrylonitrile fibers for improving tribological performance characteristics of thermoplastic polyurethane material in water-lubricated sliding bearings’, Polym. Adv. Technol., vol. 31, no. 12, pp. 3258–3271, 2020, doi: 10.1002/pat.5050.10.1002/pat.5050 Search in Google Scholar

34. Z. Cui, Z. Guo, X. Xie, C. Yuan, ‘The Synergistic Effect Mechanism of PA66 Self-Lubrication Property and Surface Texture on Tribological Performance of HDPE Water-Lubricated Bearing’, Mocaxue Xuebao/Tribology, vol. 39, no. 4, pp. 407–417, 2019, doi: 10.16078/j.tribology.2018171. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie