Uneingeschränkter Zugang

Review of Research Results Concerning the Modelling of Shipping Noise


Zitieren

1. National Research Council: Ocean noise and marine mammals. National Academies Press (US), 2003.Search in Google Scholar

2. Hermannsen, L., Beedholm, K., Tougaard, J., Madsen, P. T.: High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena), The Journal of the Acoustical Society of America, vol. 136(4), pp. 1640-1653, 2014.Search in Google Scholar

3. McKenna, D.: Ship sources of ambient noise. IEEE Journal of Oceanic Engineering, 30(2), 257-261, 2005.10.1109/JOE.2005.850879Search in Google Scholar

4. Chapman, N. R., Price, A.: Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean. The Journal of the Acoustical Society of America, 129(5), EL161-EL165, 2011.10.1121/1.3567084Search in Google Scholar

5. Andrew, R. K., Howe, B. M., Mercer, J. A.: Long-time trends in ship traffic noise for four sites off the North American West Coast. The Journal of the Acoustical Society of America, 129(2), 642-651, 2011.10.1121/1.3518770Search in Google Scholar

6. Zhu Beili, Huang Xiuchang.: Key Technologies for Submarine: Stealth Design of Acoustic Coating, Shanghai Jiao Tong University Press: Shanghai, China, 2012. (In Chinese)Search in Google Scholar

7. Wenz, G. M.: Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936-1956, 1962.10.1121/1.1909155Search in Google Scholar

8. Lurton. X.: An Introduction to Underwater Acoustics. Berlin, Germany: Springer-Praxis, 2010.Search in Google Scholar

9. Carey, W. M., Evans, R. B.: Ocean ambient noise: measurement and theory. Springer Science & Business Media, 2011.10.1007/978-1-4419-7832-5Search in Google Scholar

10. Harrison, C. H.: Formulas for ambient noise level and coherence. The Journal of the Acoustical Society of America, 99(4), 2055-2066, 1996.10.1121/1.415392Search in Google Scholar

11. Harrison, C. H.: CANARY: A simple model of ambient noise and coherence. Applied Acoustics, 51(3), 289-315, 1997.10.1016/S0003-682X(97)00004-2Search in Google Scholar

12. Zilong Peng, Bin Wang, Jun Fan.: Assessment on source levels of merchant ships observed in the East China Sea. Ocean Engineering, 156: 179-190, 2018.10.1016/j.oceaneng.2018.02.035Search in Google Scholar

13. Zilong Peng.: Measurement and modelling on the underwater noise radiated from ships in the area of Zhoushan Archipelago. Ph.D. Dissertation of Shanghai Jiao Tong University, 2018.Search in Google Scholar

14. Urick, R. J.: Principles of Underwater Sound. McGraw-Hill Co, New York, 1983.Search in Google Scholar

15. Ross, D.: Mechanics of Underwater Noise. Pergamon, New York, 1976.Search in Google Scholar

16. Wales, S. C., Heitmeyer, R. M.: An ensemble source spectra model for merchant ship-radiated noise. The Journal of the Acoustical Society of America, 111(3), 1211-1231, 2002.10.1121/1.142735511931298Search in Google Scholar

17. Breeding Jr, J. E., Pflug, L. A., Bradley, M., Walrod, M. H.: Research Ambient Noise DIrectionality (RANDI) 3.1 Physics Description (No. NRL/FR/7176--95-9628). Naval Research Lab Stennis Space Center MS, 1996.10.21236/ADA316034Search in Google Scholar

18. Arveson, P. T., Vendittis, D. J.: Radiated noise characteristics of a modern cargo ship. The Journal of the Acoustical Society of America, 107(1), 118-129, 2000.10.1121/1.42834410641625Search in Google Scholar

19. Veirs S, Veirs V, Wood J. D.: Ship noise extends to frequencies used for echolocation by endangered killer whales. PeerJ, 4: e1657, 2016.Search in Google Scholar

20. Knudsen, V. O., Alford, R. S., Emling, J. W.: Underwater ambient noise. J. Mar. Res., 7, 410-429, 1948.Search in Google Scholar

21. Piggott, C. L.: Ambient sea noise at low frequencies in shallow water of the Scotian Shelf. The Journal of the Acoustical Society of America, 36(11), 2152-2163, 1964.10.1121/1.1919337Search in Google Scholar

22. Hamson, R. M., Wagstaff, R. A.: An ambient-noise model that includes coherent hydrophone summation for sonar system performance in shallow water (No. SACLANTCEN-SR-70). SACLANT ASW RESEARCH CENTRE LA SPEZIA (ITALY), 1983.Search in Google Scholar

23. Wittekind, D. K.: A simple model for the underwater noise source level of ships. Journal of Ship production and design, 30(1), 7-14, 2014.10.5957/JSPD.30.1.120052Search in Google Scholar

24. Audoly, C., Rizzuto, E.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.1, “Ship underwater radiated noise patterns”, URL: www.aquo.eu., 2018.Search in Google Scholar

25. Traverso, F., Gaggero, T., Rizzuto, E., Trucco, A.: Spectral analysis of the underwater acoustic noise radiated by ships with controllable pitch propellers. In OCEANS 2015-Genova (pp. 1-6). IEEE, 2015.10.1109/OCEANS-Genova.2015.7271483Search in Google Scholar

26. Traverso, F., Gaggero, T., Tani, G., Rizzuto, E., Trucco, A., Viviani, M.: Parametric analysis of ship noise spectra. IEEE Journal of Oceanic Engineering, 42(2), 424-438, 2016.10.1109/JOE.2016.2583798Search in Google Scholar

27. Esperandieu, J. S.: Prediction of horizontal ambient shipping noise directionality with an analytical model: ANATRA, 1990.Search in Google Scholar

28. Simard, Y., Roy, N., Gervaise, C., Giard, S.: Analysis and modelling of 255 source levels of merchant ships from an acoustic observatory along St. Lawrence Seaway. The Journal of the Acoustical Society of America, 140(3), 2002-2018, 2016.10.1121/1.496255727914442Search in Google Scholar

29. Gaggero, T., Rizzuto, E., Traverso, F., Trucco, A.: Comparing ship underwater noise measured at sea with predictions by empirical models. In proc. of 21st International Congress on Sound and Vibration: 1510-1516, 2014.Search in Google Scholar

30. Audoly, C., Gaggero, T., Baudin, E., Folegot, T., Rizzuto, E., Mullor, R. S., ... Kellett, P.: Mitigation of underwater radiated noise related to shipping and its impact on marine life: A practical approach developed in the scope of AQUO project. IEEE Journal of Oceanic Engineering, 42(2), 373-387, 2017.10.1109/JOE.2017.2673938Search in Google Scholar

31. ANSI/ASA.: Quantities and Procedures for Description and Measurement of Underwater Sound from Ships–Part 1: General Requirements, 2009.Search in Google Scholar

32. Veritas, D. N.: Rules for classification of ships – part 6 chapter 24: Silent Class Notation, 2010.Search in Google Scholar

33. Mitson, R. B.: Underwater noise of research vessels: review and recommendations. ICES Cooperative Research Report No.209. ISSN 1017-6195, 1995.Search in Google Scholar

34. ISO 17208-1.: Underwater acoustics -- Quantities and procedures for description and measurement of underwater sound from ships -- Part 1: Requirements for precision measurements in deep water used for comparison purposes, 2016.Search in Google Scholar

35. Ainslie, M. A.: Principles of sonar performance modelling. Berlin: Springer, 2010.Search in Google Scholar

36. De Jong, C. A. F.: Characterization of ships as sources of underwater noise. In NAG/DAGA International Conference on Acoustics, Rotterdamn, The Netherlands, 2009.Search in Google Scholar

37. Coward, S.: A method for remote sensing of acoustic ship noise. Master’s thesis, 2013.Search in Google Scholar

38. Brooker, A., Humphrey, V.: Measurement of radiated underwater noise from a small research vessel in shallow water. Ocean Engineering, 120, 182-189, 2016.10.1016/j.oceaneng.2015.09.048Search in Google Scholar

39. Scrimger, P., Heitmeyer, R. M.: Acoustic source‐level measurements for a variety of merchant ships. The Journal of the Acoustical Society of America, 89(2), 691-699, 1991.10.1121/1.1894628Search in Google Scholar

40. Grelowska, G.: Study of Seasonal Acoustic Properties of Sea Water in Selected Waters of the Southern Baltic, Polish Maritime Research, 23(1), 25-30, 2016.10.1515/pomr-2016-0004Search in Google Scholar

41. McKenna, M. F., Ross, D., Wiggins, S. M., Hildebrand, J. A.: Underwater radiated noise from modern commercial ships. The Journal of the Acoustical Society of America, 131(1), 92-103, 2012.10.1121/1.3664100Search in Google Scholar

42. Coward, S., Tollefsen, D., Dong, H.: Radiated ship noise level estimates from measurements in a fjord. The Journal of the Acoustical Society of America, 134(5), 4150-4150, 2013.10.1121/1.4831212Search in Google Scholar

43. Das, A.: Shallow ambient noise variability due to distant shipping noise and tide. Applied Acoustics, 72(9), 660-664, 2011.10.1016/j.apacoust.2011.03.003Search in Google Scholar

44. Roth, E. H., Schmidt, V., Hildebrand, J. A., Wiggins, S. M.: Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean. The Journal of the Acoustical Society of America, 133(4), 1971-1980, 2013.10.1121/1.4790356Search in Google Scholar

45. Bassett, C., Polagye, B., Holt, M., Thomson, J.: A vessel noise budget for Admiralty Inlet, Puget Sound, Washington (USA). The Journal of the Acoustical Society of America, 132(6), 3706-3719, 2012.10.1121/1.4763548Search in Google Scholar

46. Trevorrow, M. V., Vasiliev, B., Vagle, S.: Directionality and maneuvering effects on a surface ship underwater acoustic signature. The Journal of the Acoustical Society of America, 124(2), 767-778, 2008.10.1121/1.2939128Search in Google Scholar

47. Gaggero, T., Bassetti, M., Firenze, E., Tesei, A., Trucco, A.: Processing strategies for evaluating the ship radiated noise using an underwater vertical array. In proc. of 2nd Int. Conf. and Exhibition on Underwater Acoustics, 329-336, 2014.Search in Google Scholar

48. Grelowska, G., Kozaczka, E., Kozaczka, S., Szymczak, W.: Underwater noise generated by a small ship in the shallow sea. Archives of Acoustics, 38(3): 351-356, 2013.Search in Google Scholar

49. Zilong Peng, Jun Fan, Bin Wang.: Analysis and Modelling on Radiated Noise of a Typical Fishing Boat Measured in Shallow Water Inspired by AQUO Project’s Model. Archives of Acoustics, 38(3): 351-356, 2018.Search in Google Scholar

50. SILENV.: Ships oriented Innovative Solutions to Reduce Noise and Vibrations, FP7-EC Collaborative Research Project, 2009-2012.Search in Google Scholar

51. Rizzuto, E., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.2, “Predictive theoretical models for propeller”, URL: www.aquo.eu, 2015.Search in Google Scholar

52. Hallander, J., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.3, “Propeller noise experiments in model scale”, URL: www.aquo.eu, 2015.Search in Google Scholar

53. Salinas, R., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T2.5, “Synthesis: Impact of propeller noise on global”, URL: www.aquo.eu, 2015.Search in Google Scholar

54. Moreno, A., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T3.1, “European URN Standard Measurement Method”, URL: www.aquo.eu, 2015.Search in Google Scholar

55. Salinas, R., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T3.2, “On-site measurements-Experimental data for accurate identification and quantification of Cavitation Noise and other sources”, URL: www.aquo.eu, 2015.Search in Google Scholar

56. Andre, M., Audoly, C.: AQUO: Achieve QUieter Oceans by shipping noise footprint reduction FP7-Collaborative project nº314227, WP 2: Noise Sources, Task T3.4, “In-situ measurements of ambient underwater noise along time in different areas with record of AIS data”, URL: www.aquo.eu, 2015.Search in Google Scholar

57. Brooker, A., Humphrey, V., Jansen, E.: Suppression of underwater Noise Induced by Cavitation, FP7-314394-SONIC, Deliverable D2.5: Full Scale Radiated Noise Measurement, 2015.Search in Google Scholar

58. Loughborough University Institutional Repository.: Measurement of underwater noise arising from marine aggregate dredging operations. Marine Aggregate Levy Sustainability Fund (MALSF), 2011.Search in Google Scholar

59. Wright, E. B., Cybulski, J.: Low-frequency acoustic source levels of large merchant ships (No. NRL-8677). NAVAL RESEARCH LAB WASHINGTON DC, 1983.10.21236/ADA126292Search in Google Scholar

60. Hamson, R. M.: The modelling of ambient noise due to shipping and wind sources in complex environments. Applied Acoustics, 51(3), 251-287, 1997.10.1016/S0003-682X(97)00003-0Search in Google Scholar

61. Etter, P. C.: Underwater Acoustics Modelling and Simulation: Principle, Techniques and application. Spon Press, New York, 2003.10.1201/9781482295146Search in Google Scholar

62. Anon.: Ocean noise and marine mammals (National Research Council of the National Academies). The National Academies Press, Washington, D.C, 2003.Search in Google Scholar

63. Hom, F. L. C., Kinda, F. G. B., Hom, S.: Statistical Ambient Noise Maps from Traffic at World and Basin Scales. Institute Of Acoustics, Cambridge, UK, 2016.Search in Google Scholar

64. Colin, M. E., Ainslie, M. A., Binnerts, B., de Jong, C. A., Karasalo, I., Östberg, M., ... Clorennec, D.: Definition and results of test cases for shipping sound maps. IEEE, 2015.10.1109/OCEANS-Genova.2015.7271461Search in Google Scholar

65. Audoly, C., Flikeema, M.: Suppression of underwater Noise Induced by Cavitation, FP7-314394-SONIC, Deliverable D5.4: Guidelines for regulation on UW noise from commercial shipping, 2015.Search in Google Scholar

66. Aulanier, F., Simard, Y., Roy, N., Bandet, M., Gervaise, C.: Groundtruthed probabilistic shipping noise modelling and mapping: Application to blue whale habitat in the Gulf of St. Lawrence. In Proceedings of Meetings on Acoustics 4ENAL (Vol. 27, No. 1, p. 070006). ASA, 2016.Search in Google Scholar

67. Jones, E. L., Hastie, G. D., Smout, S., Onoufriou, J., Merchant, N. D., Brookes, K. L., Thompson, D.: Seals and shipping: quantifying population risk and individual exposure to vessel noise. Journal of applied ecology, 54(6), 1930-1940, 2017.10.1111/1365-2664.12911Search in Google Scholar

68. Folegot, T., Clorennec, D., Brunet, P., Six, L., Chavanne, R., van der Schaar, M., André, M.: Monitoring long term ocean noise in European waters. In OCEANS 2015-Genova:1-7, 2015.Search in Google Scholar

69. Soares, C., Zabel, F., Jesus, S. M.: A shipping noise prediction tool. In OCEANS 2015-Genova:1-7, 2015.Search in Google Scholar

70. Erbe, C., MacGillivray, A., Williams, R.: Mapping cumulative noise from shipping to inform marine spatial planning. The Journal of the Acoustical Society of America, 132(5), EL423-EL428, 2012.10.1121/1.475877923145705Search in Google Scholar

71. Sertlek, H. Ö., Binnerts, B., Ainslie, M. A.: The effect of sound speed profile on shallow water shipping sound maps. The Journal of the Acoustical Society of America, 140(1), EL84-EL88, 2016.10.1121/1.495471227475218Search in Google Scholar

72. Buszman K., Gloza M.: Detection of Floating Objects Based on Hydroacoustic and Hydrodynamic Pressure Measurements in the Coastal Zone, Polish Maritime Research, 27(2), 168-175, 2020.10.2478/pomr-2020-0038Search in Google Scholar

73. Buszman K.: Analysing the Impact on Underwater Noise of Changes to the Parameters of a Ship’s Machinery, Polish Maritime Research, 27(3), 176-181, 2020.10.2478/pomr-2020-0059Search in Google Scholar

74. Kozaczka, E., Grelowska, G.: Propagation of Ship-Generated Noise in Shallow Sea, Polish Maritime Research, 25(2), 37-46, 2018.10.2478/pomr-2018-0052Search in Google Scholar

75. Kozaczka, E., & Grelowska, G.: Autonomous Platform to Protect Maritime Infrastructure Facilities, Polish Maritime Research, 26(4), 101-108, 2019.10.2478/pomr-2019-0071Search in Google Scholar

76. Gaggero, T., Rizzuto, E., Traverso, F., Trucco, A.: Comparing ship underwater noise measured at sea with predictions by empirical models. In proc. of 21st International Congress on Sound and Vibration: 1510-1516, 2014.Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie