Uneingeschränkter Zugang

Method of Cooperative Formation Control for Underactuated USVS Based on Nonlinear Backstepping and Cascade System Theory


Zitieren

1. J. F. Jimenez and J. M. Giron-Sierra, “USV based automatic deployment of booms along quayside mooring ships: Scaled experiments and simulations,” Ocean Engineering, vol. 207, pp. 1−12, Jul. 2020. doi:10.1016/j.oceaneng.2020.107438.10.1016/j.oceaneng.2020.107438 Search in Google Scholar

2. J. Y. Zhuang, L. Zhang, Z. H. Qin, H. B. Sun, B. Wang, and J. Cao, “Motion control and collision avoidance algorithm for unmanned surface vehicle swarm in practical maritime environment,” Polish Maritime Research, vol. 26, no. 1, pp.107−116. doi: 10.2478/pomr-2019-0012.10.2478/pomr-2019-0012 Search in Google Scholar

3. B. C. Shah and S. K. Gupta, “Long-distance path planning for unmanned surface vehicles in complex marine environment,” IEEE Journal of Oceanic Engineering, vol. 45, no. 3, pp. 813−830, Jul. 2020. doi:10.1109/JOE.2019.2909508.10.1109/JOE.2019.2909508 Search in Google Scholar

4. X. Liang, X. R. Qu, Y. H. Hou, Y. Li, and R. B. Zhang, “Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments,” Ocean Engineering, vol. 205, pp. 1−9, Jun. 2020. doi:10.1016/j.oceaneng.2020.107328.10.1016/j.oceaneng.2020.107328 Search in Google Scholar

5. H. N. Esfahani and R. Szlapczynski, “Model predictive super-twisting sliding mode control for an autonomous surface vehicle”, Polish Maritime Research, vol. 26, no. 3, pp. 163−171, Sept. 2019. doi: 10.2478/pomr-2019-0057.10.2478/pomr-2019-0057 Search in Google Scholar

6. M. A. Hinostroza, H. T. Xu, and C. G. Soares, “Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment,” Ocean Engineering, vol. 183, pp. 132−154, Jul. 2019. doi:10.1016/j. oceaneng.2019.04.098. Search in Google Scholar

7. R. V. C. Vid, J. P. V. S. Cunha, and P. B. Garcia-Rosa, “Stabilizing control of an unmanned surface vehicle pushing a floating load,” International Journal of Control, Automation and Systems, vol. 18, pp. 1−10, Jun. 2020. doi:10.1007/s12555-019-0677-1.10.1007/s12555-019-0677-1 Search in Google Scholar

8. S. S. Wang and Y. L. Tuo, “Robust trajectory tracking control of underactuated surface vehicle with prescribed performance,” Polish Maritime Research, vol. 27, no. 4, pp. 148−156, Dec. 2020. doi: 10.2478/pomr-2020-0075.10.2478/pomr-2020-0075 Search in Google Scholar

9. C. Paliotta, E. Lefeber, K. Y. Pettersen, J. Pinto, M. Costa, and J. T. D. B. Sousa, “Trajectory tracking and path following for underactuated marine vehicles,” IEEE Transactions on Control Systems Technology, vol. 27, no. 4, pp. 1423−1437, Jul. 2019. doi:10.1109/TCST.2018.283-4518. Search in Google Scholar

10. J. Han and J. Kim, “Three-dimensional reconstruction of a marine floating structure with an unmanned surface vessel,” IEEE Journal of Oceanic Engineering, vol. 44, no. 4, pp. 984−996, Oct. 2019. doi:10.11-09/JOE.2018.2862618.10.1109/JOE.2018.2862618 Search in Google Scholar

11. K. Shojaei, “Leader–follower formation control of underactuated autonomous marine surface vehicles with limited torque,” Ocean Engineering, vol. 105, pp. 196−205, Jun. 2015. doi:10.1016/j.oceaneng. 2015.06.026. Search in Google Scholar

12. Z. Y. Gao and G. Guo, “Adaptive formation control of autonomous underwater vehicles with model uncertainties,” Int. J. Adapt. Control Signal Process, vol. 32, pp. 1067−1080, Mar. 2018. doi:10.1002/acs. 2886. Search in Google Scholar

13. J. Ghommam and M. Saad, “Adaptive leader–follower formation control of underactuated surface vessels under asymmetric range and bearing constraints,” IEEE Transactions on Control Systems Technology, vol. 67, no. 2, pp. 852−865, Feb. 2018. doi:10.1109/TVT. 2017.2760367. Search in Google Scholar

14. L. Y. Chen, H. Hopman, and R. R. Negenborn, “Distributed model predictive control for vessel train formations of cooperative multi-vessel systems,” Transportation Research Part C-Emerging Technologies, vol. 92, pp. 101−118, May 2018. doi:10.1016/j.trc.2018. 04.013. Search in Google Scholar

15. J. X. Zhang and G. H. Yang, “Fault-tolerant leader-follower formation control of marine surface vessels with unknown dynamics and actuator faults,” Int. J. Robust Nonlinear Control, vol. 28, pp. 4188−4208, Apr. 2018. doi:10.1002/rnc.4228.10.1002/rnc.4228 Search in Google Scholar

16. M. Y. Fu and L. L. Yu, “Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances,” Ocean Engineering, vol. 159, pp. 219−227, Apr. 2018. doi:10.1016/j. oceaneng.2018.04.016. Search in Google Scholar

17. T. S. Li, R. Zhao, C. L. P. Chen, L. Y. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Transportation on Cybernetics, vol. 48, no. 11, pp. 3243−3253, Nov. 2018. doi:10.1109/TCYB.2018.2794968.10.1109/TCYB.2018.279496829994578 Search in Google Scholar

18. Z. J. Sun, G. Q. Zhang, Y. Lu, and W. D. Zhang, “Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation,” ISA Transactions, vol. 72, pp. 15−24, Nov. 2017. doi:10.1016/j.isatra.2017.11.008.10.1016/j.isatra.2017.11.00829221607 Search in Google Scholar

19. S. L. Dai, S. D. He, H. Lin, and C. Wang, “Platoon formation control with prescribed performance guarantees for USVs,” IEEE Transportation on Industrial Electronics, vol. 65, no. 5, pp. 4237−4246, May 2018. doi:10.1109/TIE.2017.2758743.10.1109/TIE.2017.2758743 Search in Google Scholar

20. Y. Lu, G. Q. Zhang, Z. J. Sun, and W. D. Zhang, “Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB,” Nonlinear Dynamics, vol. 94, pp. 503−519, Jun. 2018. doi:10.1007/s11071-018-4374-z.10.1007/s11071-018-4374-z Search in Google Scholar

21. Y. Li and J. Zheng, “The design of ship formation based on a novel disturbance rejection control,” International Journal of Control, Automation and Systems, vol. 16, no. 4, pp. 1833−1839, Feb. 2018. doi: 10.1007/s12555-017-0424-4.10.1007/s12555-017-0424-4 Search in Google Scholar

22. B. S. Park and S. J. Yoo, “Adaptive-observe-based formation tracking of networked uncertain underactuated surface vessels with connectivity preservation and collision avoidance,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 356, pp. 7947−7966, Apr. 2019. doi:10.1016/j.jfranklin.2019.04.017.10.1016/j.jfranklin.2019.04.017 Search in Google Scholar

23. C. F. Huang, X. K. Zhang, and G. Q. Zhang, “Improved decentralized finite-time formation control of underactuated USVs via a novel disturbance observer,” Ocean Engineering, vol. 174, pp. 117−124, Jan. 2019. doi:10.1016/j.oceaneng.2019.01.043.10.1016/j.oceaneng.2019.01.043 Search in Google Scholar

24. Z. H. Peng, N. Gu, Y. Zhang, Y. J. Liu, D. Wang, and L. Liu, “Path-guided time-varying formation control with collision avoidance and connectivity preservation of under-actuated autonomous surface vehicles subject to unknown input gains,” Ocean Engineering, vol. 191, pp. 1−10, Oct. 2019. doi:10.1016/j.oceaneng.2019.106501.10.1016/j.oceaneng.2019.106501 Search in Google Scholar

25. J. Li, J. L. Du, and W. J. Chang, “Robust time-varying formation control for underactuated autonomous underwater vehicles with disturbances under input saturation,” Ocean Engineering, vol. 179, pp. 180−188, Mar. 2019. doi:10.1016/j.oceaneng.2019.03.017.10.1016/j.oceaneng.2019.03.017 Search in Google Scholar

26. H. N. Esfahani, R. Szlapcznski and H. Ghaemi, “High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-based adaptive gains and time delay estimation”, Ocean Engineering, vol. 191, no. 106526, pp.1−19, Nov. 2019. doi:10.1016/j.oceaneng.2019.106526.10.1016/j.oceaneng.2019.106526 Search in Google Scholar

27. T. Fossen, “Handbook of Marine Craft Hydrodynamics and Motion Control”, New York: Wiley, 2011.10.1002/9781119994138 Search in Google Scholar

28. E. Panteley, E, Lefeber, A. Loria and H. Nijmeijer, “Exponential tracking control of a mobile car using cascaded approach,” IFAC Proceedings, vol. 31, no. 27, pp. 201−206, 1998. doi: 10.1016/S1474-6670(17)40028-0.10.1016/S1474-6670(17)40028-0 Search in Google Scholar

29. H. K. Khalil, “Nonlinear Systems” 3rd ed., New Jersey: Prentice Hall, 2002. Search in Google Scholar

30. K. D. Do and J. Pan, “Global robust adaptive path following of underactuated ships,” Automatica, vol. 42, no. 10, pp.1713−1722, Oct. 2006. doi: 10.1016/j. automatica.2006.01.026. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie