Uneingeschränkter Zugang

Modelling Ships Main and Auxiliary Engine Powers with Regression-Based Machine Learning Algorithms


Zitieren

1. A. Ekmekçioğlu, K. Ünlügençoğlu, and U. B. Çelebi, ‘Ship emission estimation for Izmir and Mersin international ports – Turkey’, Journal of Thermal Engineering, vol. 5, no. 6, pp. 184–195, 2019, doi: 10.18186/thermal.654319.10.18186/thermal.654319 Search in Google Scholar

2. C. Trozzi, ‘Emission estimate methodology for maritime navigation’, Co-leader of the Combustion & Industry Expert Panel, 2010. Search in Google Scholar

3. R. Yan, S. Wang, and Y. Du, ‘Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship’, Transportation Research Part E: Logistics and Transportation Review, vol. 138, no. July 2019, p. 101930, 2020, doi: 10.1016/j.tre.2020.101930.10.1016/j.tre.2020.101930 Search in Google Scholar

4. L. Huang, Y. Wen, Y. Zhang, C. Zhou, F. Zhang, and T. Yang, ‘Dynamic calculation of ship exhaust emissions based on real-time AIS data’, Transportation Research Part D: Transport and Environment, vol. 80, no. August 2019, p. 102277, 2020, doi: 10.1016/j.trd.2020.102277.10.1016/j.trd.2020.102277 Search in Google Scholar

5. T. A. Tran, ‘Effect of ship loading on marine diesel engine fuel consumption for bulk carriers based on the fuzzy clustering method’, Ocean Engineering, vol. 207, no. January 2019, p. 107383, 2020, doi: 10.1016/j.oceaneng.2020.107383.10.1016/j.oceaneng.2020.107383 Search in Google Scholar

6. X. Yan, K. Wang, Y. Yuan, X. Jiang, and R. R. Negenborn, ‘Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors’, Ocean Engineering, vol. 169, no. August, pp. 457–468, 2018, doi: 10.1016/j. oceaneng.2018.08.050. Search in Google Scholar

7. T. Cepowski, ‘Regression formulas for the estimation of engine total power for tankers, container ships and bulk carriers on the basis of cargo capacity and design speed’, Polish Maritime Research, vol. 26, no. 1, pp. 82–94, Mar. 2019, doi: 10.2478/pomr-2019-0010.10.2478/pomr-2019-0010 Search in Google Scholar

8. W. J. Requia, B. A. Coull, and P. Koutrakis, ‘Evaluation of predictive capabilities of ordinary geostatistical interpolation, hybrid interpolation, and machine learning methods for estimating PM2.5 constituents over space’, Environmental Research, vol. 175, no. April, pp. 421–433, 2019, doi: 10.1016/j.envres.2019.05.025.10.1016/j.envres.2019.05.02531154232 Search in Google Scholar

9. T. Uyanık, Ç. Karatuğ, and Y. Arslanoğlu, ‘Machine learning approach to ship fuel consumption: A case of container vessel’, Transportation Research Part D: Transport and Environment, vol. 84, 2020, doi: 10.1016/j.trd.2020.102389.10.1016/j.trd.2020.102389 Search in Google Scholar

10. L. Barua, B. Zou, and Y. Zhou, ‘Machine learning for international freight transportation management: A comprehensive review’, Research in Transportation Business and Management, no. July 2019, p. 100453, 2020, doi: 10.1016/j.rtbm.2020.100453.10.1016/j.rtbm.2020.100453 Search in Google Scholar

11. Y. Peng, H. Liu, X. Li, J. Huang, and W. Wang, ‘Machine learning method for energy consumption prediction of ships in port considering green ports’, Journal of Cleaner Production, vol. 264, p. 121564, 2020, doi: 10.1016/j. jclepro.2020.121564. Search in Google Scholar

12. J. H. Jeong, J. H. Woo, and J. G. Park, ‘Machine learning methodology for management of shipbuilding master data’, International Journal of Naval Architecture and Ocean Engineering, vol. 12, pp. 428–439, 2020, doi: 10.1016/j. ijnaoe.2020.03.005. Search in Google Scholar

13. C. Gkerekos, I. Lazakis, and G. Theotokatos, ‘Machine learning models for predicting ship main engine fuel oil consumption: A comparative study’, Ocean Engineering, vol. 188, no. August, p. 106282, 2019, doi: 10.1016/j. oceaneng.2019.106282. Search in Google Scholar

14. A. Jonquais and F. Krempl, ‘Predicting Shipping Time with Machine Learning’, 2019. Search in Google Scholar

15. O. Bodunov, F. Schmidt, A. Martin, A. Brito, and C. Fetzer, ‘Grand challenge: Real-time destination and ETA prediction for maritime traffic’, DEBS 2018 – Proceedings of the 12th ACM International Conference on Distributed and Event-Based Systems, pp. 198–201, 2018, doi: 10.1145/3210284.3220502.10.1145/3210284.3220502 Search in Google Scholar

16. J. Yuan and V. Nian, ‘Ship energy consumption prediction with Gaussian process metamodel’, Energy Procedia, vol. 152, pp. 655–660, 2018, doi: 10.1016/j.egypro.2018.09.226.10.1016/j.egypro.2018.09.226 Search in Google Scholar

17. Y. B. A. Farag and A. I. Ölçer, ‘The development of a ship performance model in varying operating conditions based on ANN and regression techniques’, Ocean Engineering, vol. 198, no. July 2019, 2020, doi: 10.1016/j. oceaneng.2020.106972. Search in Google Scholar

18. L. Bui-Duy and N. Vu-Thi-Minh, ‘Utilization of a deep learning-based fuel consumption model in choosing a liner shipping route for container ships in Asia’, Asian Journal of Shipping and Logistics, 2020, doi: 10.1016/j.ajsl.2020.04.003.10.1016/j.ajsl.2020.04.003 Search in Google Scholar

19. H. Cui, O. Turan, and P. Sayer, ‘Learning-based ship design optimization approach’, CAD Computer Aided Design, vol. 44, no. 3, pp. 186–195, 2012, doi: 10.1016/j.cad.2011.06.011.10.1016/j.cad.2011.06.011 Search in Google Scholar

20. M. Peker, O. Özkaraca, and B. Kesimal, ‘Modeling heating and cooling loads by regression-based machine learning techniques for energy-efficient building design’, International Journal of Informatics Technologies, pp. 443–449, 2017, doi: 10.17671/gazibtd.310154.10.17671/gazibtd.310154 Search in Google Scholar

21. V. Bertram and H. Schneekluth, Ship Design for Efficiency and Economy. Elsevier, 1998. Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie