Uneingeschränkter Zugang

Influence of Process of Straightening Ship Hull Structure Made of 316L Stainless Steel on Corrosion Resistance and Mechanical Properties


Zitieren

1. ASTM. (2003): ASTM G48–03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution. ASTM International, West Conshohocken.Search in Google Scholar

2. Dobrzański L. (2004): Metal Engineering Materials. WNT, Warsaw.Search in Google Scholar

3. Hu C. Y., Wan X. L., Wu K. M., Xu D. M., Li G. Q., Xu G., Misra R. D. K. (2020): On the Impacts of Grain Refinement and Strain-Induced Deformation on Three-Body Abrasive Wear Responses of 18Cr–8Ni Austenitic Stainless Steel. Wear, Vol. 446/447 (December 2019). https://doi.org/10.1016/j.wear.2019.20318110.1016/j.wear.2019.203181Search in Google Scholar

4. ISO. (1998): ISO 3651-2:1998Determination of Resistance to Intergranular Corrosion of Stainless Steels – Part 2: Ferritic, Austenitic and Ferritic-Austenitic (Duplex) Stainless Steels – Corrosion Test in Media Containing Sulphuric Acid. 2nd Edition, Geneva.Search in Google Scholar

5. ISO. (2003): ISO 17639:2003 Destructive Tests on Welds in Metallic Materials – Macroscopic and Microscopic Examination of Welds. Geneva.Search in Google Scholar

6. ISO. (2005): ISO 6507-1:2005 Metallic Materials – Vickers Hardness Test – Part 1: Test Method. Geneva.Search in Google Scholar

7. ISO. (2012): ISO 4136:2012 – Destructive Tests on Welds in Metallic Materials – Transverse Tensile Test. ISO, Geneva.Search in Google Scholar

8. ISO. (2014): ISO 6506-1:2014 Metallic Materials – Brinell Hardness Test – Part 1: Test Method. Geneva.Search in Google Scholar

9. ISO. (2016): ISO 148-1:2016 Metallic Materials – Charpy Pendulum Impact Test – Part 1: Test Method. Geneva.Search in Google Scholar

10. ISO. (2016): ISO 6892-1:2016 Metallic Materials – Tensile Testing – Part 1: Method of Test at Room Temperature. Geneva.Search in Google Scholar

11. ISO. (2017): ISO 15614-1:2017 Specification and Qualification of Welding Procedures for Metallic Materials – Welding Procedure Test – Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys. Geneva.Search in Google Scholar

12. Jakubowski M. Corrosion Fatigue Crack Propagation Rate Characteristics for Weldable Ship and Offshore Influence of Loading Frequency and Saltw. Polish Maritime Research. 2017, Volume 24: Issue 1 DOI: https://doi.org/10.1515/pomr-2017-0011.10.1515/pomr-2017-0011Search in Google Scholar

13. Kozak J., Tarelko W. Case study of masts damage of the sail training vessel POGORIA. Engineering Failure Analysis. 2011, Tomy Volume 18, Issue 3, Pages 819-827, https://doi.org/10.1016/j.engfailanal.2010.11.016.10.1016/j.engfailanal.2010.11.016Search in Google Scholar

14. Łabanowski J., Jurkowski M., Fydrych D., Rogalski G. (2017): Durability of Welded Water Supply Pipelines Made of Austenitic Steels. Przegląd Spawalnictwa, Vol. 89. https://doi.org/10.26628/wtr.v89i8.801.Search in Google Scholar

15. PKN. (2003): PN-EN 10088-1:1998/Ap 2003, Stale Odporne Na Korozję – Część 1: Wykaz Stali Odpornych Na Korozję. PKN, Warsaw.Search in Google Scholar

16. Singh S., Andersson J. (2016): Review of Hot Cracking Phenomena in Austenitic Stainless Steels. 7th International Swedish Production Symposium.Search in Google Scholar

17. Singh S., Hurtig K., Andersson J. (2018): Investigation on Effect of Welding Parameters on Solidification Cracking of Austenitic Stainless Steel 314. Procedia Manufacturing, Vol. 25, 351–357. https://doi.org/10.1016/j.promfg.2018.06.103.10.1016/j.promfg.2018.06.103Search in Google Scholar

18. Tsouli S., Lekatou A. G., Nikolaidis C., Kleftakis, S. (2019): Corrosion and Tensile Behavior of 316L Stainless Steel Concrete Reinforcement in Harsh Environments Containing a Corrosion Inhibitor. Procedia Structural Integrity, Vol. 17, 268–275. https://doi.org/10.1016/j.prostr.2019.08.036.10.1016/j.prostr.2019.08.036Search in Google Scholar

19. Xu D. M., Li G. Q., Wan X. L., Misra R. D. K., Yu J. X., Xu G. (2020): On the Deformation Mechanism of Austenitic Stainless Steel at Elevated Temperatures: A Critical Analysis of Fine-Grained versus Coarse-Grained Structure. Materials Science and Engineering A, Vol. 773. https://doi.org/10.1016/j.msea.2019.138722.10.1016/j.msea.2019.138722Search in Google Scholar

20. Yari M. (2017): An Intro to Pipeline Corrosion in Seawater. Corrosionpedia Vol. 2, 1432. https://www.corrosionpedia.com/2/1432/corrosion-101/an-intro-to-pipeline-corrosion-in-seawater (accessed: 29 April 2020)Search in Google Scholar

21. Yin F., Yang L., Wang M., Zong L., Chang X. (2019): Study on Ultra-Low Cycle Fatigue Behavior of Austenitic Stainless Steel. Thin-Walled Structures. Vol. 143, 106205. https://doi.org/10.1016/j.tws.2019.106205.10.1016/j.tws.2019.106205Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie