Zitieren

1. Basumatary, M., Biswas, A., Misra, R.D.: CFD analysis of an innovative combined lift and drag (CLD) based modified Savonius water turbine. Energy Convers. Manag. 174, 72–87 (2018). https://doi.org/10.1016/j.enconman.2018.08.025.10.1016/j.enconman.2018.08.025 Search in Google Scholar

2. Sritram, P., Suntivarakorn, R.: Comparative Study of Small Hydropower Turbine Efficiency at Low Head Water. Energy Procedia. 138, 646–650 (2017). https://doi.org/10.1016/j.egypro.2017.10.181.10.1016/j.egypro.2017.10.181 Search in Google Scholar

3. Jiyun, D., Hongxing, Y., Zhicheng, S., Xiaodong, G.: Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes. Renew. Energy. 127, 386–397 (2018). https://doi.org/10.1016/j.renene.2018.04.070.10.1016/j.renene.2018.04.070 Search in Google Scholar

4. Viollet, P.-L.: From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions. Comptes Rendus Mécanique. 345, 570–580 (2017). https://doi.org/10.1016/j.crme.2017.05.016.10.1016/j.crme.2017.05.016 Search in Google Scholar

5. Ferziger, J.H., Perić, M.: Computational methods for fluid dynamics. Springer, Berlin; New York (2002).10.1007/978-3-642-56026-2 Search in Google Scholar

6. Flizikowski, J., Topoliński, T., Opielak, M., Tomporowski, A., Mroziński, A.: Research and analysis of operating characteristics of energetic biomass mikronizer. Eksploat. Niezawodn. 17, 19–26 (2015). Search in Google Scholar

7. Tomporowski, A., Flizikowski, J.: Motion characteristics of a multi-disc grinder of biomass grain. Przem. Chem. 92, 498–503 (2013). Search in Google Scholar

8. Flizikowski, J.B., Kruszelnicka, W., Tomporowski, A., Mrozinski, A.: A study of operating parameters of a roller mill with a new design. AIP Conf. Proc. 2077, 020018 (2019). https://doi.org/10.1063/1.5091879.10.1063/1.5091879 Search in Google Scholar

9. Tomporowski, A., Flizikowski, J., Kruszelnicka, W.: A new concept of roller-plate mills. Przem. Chem. 96, 1750–1755 (2017). https://doi.org/10.15199/62.2017.8.29.10.15199/62.2017.8.29 Search in Google Scholar

10. Du, J., Shen, Z., Yang, H.: Effects of different block designs on the performance of inline cross-flow turbines in urban water mains. Appl. Energy. 228, 97–107 (2018). https://doi.org/10.1016/j.apenergy.2018.06.079.10.1016/j.apenergy.2018.06.079 Search in Google Scholar

11. Jiyun, D., Zhicheng, S., Hongxing, Y.: Performance enhancement of an inline cross-flow hydro turbine for power supply to water leakage monitoring system. Energy Procedia. 145, 363–367 (2018). https://doi.org/10.1016/j.egypro.2018.04.065.10.1016/j.egypro.2018.04.065 Search in Google Scholar

12. Kruszelnicka, W., Flizikowski, J., Tomporowski, A.: Auto-monitoring system of grainy biomass comminution technology. IOP Conf. Ser. Mater. Sci. Eng. 393, 012076 (2018). https://doi.org/10.1088/1757-899X/393/1/012076.10.1088/1757-899X/393/1/012076 Search in Google Scholar

13. Tongphong, W., Saimek, S.: The Design and Development of an Oscillating Water Turbine. Energy Procedia. 52, 552–558 (2014). https://doi.org/10.1016/j.egypro.2014.07.109.10.1016/j.egypro.2014.07.109 Search in Google Scholar

14. Wang, J., Piechna, J., Müller, N.: A novel design of composite water turbine using CFD. J. Hydrodyn. Ser B. 24, 11–16 (2012). https://doi.org/10.1016/S1001-6058(11)60213-8.10.1016/S1001-6058(11)60213-8 Search in Google Scholar

15. Tomporowski, A., Flizikowski, J., Kasner, R., Kruszelnicka, W.: Environmental Control of Wind Power Technology. Rocz. Ochr. Śr. 19, 694–714 (2017). Search in Google Scholar

16. Flaszyński, P.: Wyniki obliczeń przepływowych w następstwie obliczenia sił i momentów obrotowych uzyskiwanych dla założonych parametrów konstrukcyjnych projektowanej turbiny, (2011). Search in Google Scholar

17. Boxma, O., Zwart, B.: Fluid flow models in performance analysis. Comput. Commun. 131, 22–25 (2018). https://doi.org/10.1016/j.comcom.2018.07.009.10.1016/j.comcom.2018.07.009 Search in Google Scholar

18. Tang, M., Yuan, L., He, S., Fu, T.: Simplified modeling of YPL fluid flow through a concentric elliptical annular pipe. J. Pet. Sci. Eng. 162, 225–232 (2018). https://doi.org/10.1016/j.petrol.2017.12.030.10.1016/j.petrol.2017.12.030 Search in Google Scholar

19. Sondermann, C.N., Baptista, R.M., Bastos de Freitas Rachid, F., Bodstein, G.C.R.: Numerical simulation of non-isothermal two-phase flow in pipelines using a two-fluid model. J. Pet. Sci. Eng. 173, 298–314 (2019). https://doi.org/10.1016/j.petrol.2018.10.018.10.1016/j.petrol.2018.10.018 Search in Google Scholar

20. Rasti, E., Talebi, F., Mazaheri, K.: A turbulent duct flow investigation of drag-reducing viscoelastic FENE-P fluids based on different low-Reynolds-number models. Phys. Stat. Mech. Its Appl. (2019). https://doi.org/10.1016/j.physa.2019.03.083.10.1016/j.physa.2019.03.083 Search in Google Scholar

21. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (1992). https://doi.org/10.2514/6.1992-439.10.2514/6.1992-439 Search in Google Scholar

22. Launder, B., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972). Search in Google Scholar

23. Launder, B.E., Sharma, B.I.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–137 (1974). Search in Google Scholar

24. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids Fluid Dyn. 4, 1510–1520 (1992). https://doi.org/10.1063/1.858424.10.1063/1.858424 Search in Google Scholar

25. Wilcox, D.C.: Turbulence Modeling for CFD. D C W Industries, La Cãnada, Calif (2006). Search in Google Scholar

26. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149.10.2514/3.12149 Search in Google Scholar

27. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975). https://doi.org/10.1017/S0022112075001814.10.1017/S0022112075001814 Search in Google Scholar

28. Gavrilov, A.A., Rudyak, V.Y.: Reynolds-averaged modeling of turbulent flows of power-law fluids. J. Non-Newton. Fluid Mech. 227, 45–55 (2016). https://doi.org/10.1016/j.jnnfm.2015.11.006.10.1016/j.jnnfm.2015.11.006 Search in Google Scholar

29. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques. Springer-Verlag, NY (1991). Search in Google Scholar

30. Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics – 2nd Edition. Elsevier (2007). Search in Google Scholar

31. Tomporowski, A., Flizikowski, J., Wełnowski, J., Najzarek, Z., Topoliński, T., Kruszelnicka, W., Piasecka, I., Śmigiel, S.: Regeneration of rubber waste using an intelligent grinding system. Przem. Chem. 97, 1659–1665 (2018). https://doi.org/10.15199/62.2018.10.6.10.15199/62.2018.10.6 Search in Google Scholar

32. Rudnicki, J., Zadrag, R.: Technical State Assessment of Charge Exchange System of Self-Ignition Engine, Based on the Exhaust Gas Composition Testing. Pol. Marit. Res. 24, 203–212 (2017). https://doi.org/10.1515/pomr-2017-0040.10.1515/pomr-2017-0040 Search in Google Scholar

33. Korczewski, Z., Rudnicki, J.: An Energy Approach to the Fatigue Life of Ship Propulsion Systems Marine 2015. In: Salvatore, F., Broglia, R., and Muscari, R. (eds.) VI International Conference on Computational Methods in Marine Engineering – The Conference Proceedings. pp. 490–501. Int Center Numerical Methods Engineering, 08034 Barcelona (2015). Search in Google Scholar

34. Flizikowski, J.: Apparatus for aerating water courses and disintegrating solid impurities contained in their water, http://regserv.uprp.pl/register/application?number=P.308679, (1999). Search in Google Scholar

35. Green Tech Avenue: Micro Hydro Power Technology – 5kW WATER TURBINE, https://translate.google.com/translate?hl=pl&sl=en&u=http://www.greentechavenue.com/wp-content/uploads/2011/Greentechavenue_micro_hydro_power_solution.pdf&prev=search. Search in Google Scholar

36. Matulewicz, W.: Floating water – power plant. Przegląd Elektrotechniczny. 1, 279–283 (2015). https://doi.org/10.15199/48.2015.09.68.10.15199/48.2015.09.68 Search in Google Scholar

37. Dąbała, K., Krzemień, Z., Olszewski, A.: Micro hydropower station with a spiral turbine. Zesz. Probl. – Masz. Elektr. 129–133 (2009). Search in Google Scholar

38. Rangan, P.R., Karnyoto, A.S., Ambabunga, Y.A.M., Rambulangi, A.C.: Design of River Flow Floating Portable Micro-Hydro. Int. J. Eng. Tech. 4, 593–597 (2018). Search in Google Scholar

39. Nguyen, M.H., Jeong, H., Yang, C.: A study on flow fields and performance of water wheel turbine using experimental and numerical analyses. Sci. China Technol. Sci. 61, 464–474 (2018). https://doi.org/10.1007/s11431-017-9146-9.10.1007/s11431-017-9146-9 Search in Google Scholar

40. Akimoto, H., Tanaka, K., Uzawa, K.: A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents. Renew. Energy. 57, 283–288 (2013). https://doi.org/10.1016/j.renene.2013.02.002.10.1016/j.renene.2013.02.002 Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie