Uneingeschränkter Zugang

Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units


Zitieren

1. WOR 3 (2014): Marine Resources – Opportunities and Risks. Retrieved from https://worldoceanreview.com/en/wor-3/Search in Google Scholar

2. Olszewski W., Dzida M. (2018): Selected Combined Power Systems Consisted of Self-Ignition Engine and Steam Turbine. Polish Maritime Research, No.1, Vol. 25, 198–203.10.2478/pomr-2018-0042Search in Google Scholar

3. Domachowski Z., Dzida M. (2019): Applicability of Inlet Air Fogging to Marine Gas Turbine. Polish Maritime Research, No.1, Vol. 26, 15–19.10.2478/pomr-2019-0002Search in Google Scholar

4. Mazzetti M. J., Nekså P., Walnum H. T., Hemmingsen A. T. (2014): Energy-Efficient Technologies for Reduction of Offshore CO2 Emissions. Oil and Gas Facilities, February 2014, 8996.10.2118/169811-PASearch in Google Scholar

5. Szymaniak M. (2018): Steam Turbine Stage Modernisation in Front of the Extraction Point. Polish Maritime Research, No.2, Vol. 25, 116–122.10.2478/pomr-2018-0062Search in Google Scholar

6. Sarnecki J., Białecki T., Gawron B., Głąb J., Kamiński J., Kulczycki A., Romanyk K. (2019) Thermal Degradation Process of Semi-Synthetic Fuels for Gas Turbine Engines in Non-Aeronautical Applications. Polish Maritime Research, No.1, Vol. 26, 65–71.10.2478/pomr-2019-0008Search in Google Scholar

7. Michael Farry (1998) Ethane from associated gas still the most economical. Retrieved from https://www.ogj.com/articles/print/volume-96/issue-23/in-this-issue/gas-processing/ethane-from-associated-gas-still-the-most-economical.html, Accessed 20 May 2019.Search in Google Scholar

8. Al-Saleh M.A., Duffuaa S.O.,. Al-Marhoun M.A, Al-Zayer J.A. (1991): Impact of crude oil production on the petrochemical industry in Saudi Arabia. Retrieved from https://www.researchgate.net/publication/256569784_Impact_of_crude_oil_production_on_the_petrochemical_industry_in_Saudi_Arabia/figures.10.1016/0360-5442(91)90141-8Search in Google Scholar

9. Nguyen T., Elmegaard B., Pierobon L., Haglind F., Breuhaus P. (2012): Modelling and analysis of offshore energy systems on North Sea oil and gas platforms. 53-rd International Conference of Scandinavian Simulation Society, SIMS 2012. Retrieved from https://www.researchgate.net/publication/263973093_Modelling_and_analysis_of_offshore_energy_systems_on_North_Sea_oil_and_gas_platforms/figures?lo=1.Search in Google Scholar

10. Foss M. M. (2004): Interstate natural gas quality specifications & interchangeability. Center for Energy Economics. Retrieved from http://www.beg.utexas.edu/files/energyecon/global-gas-and-lng/CEE_Interstate_Natural_Gas_Quality_Specifications_and_Interchangeability.pdf.Search in Google Scholar

11. Oil & Gas Industry Overview (2019): Crude Oil and Natural Gas: From Source to Final Products. Retrieved from https://www.ihrdc.com/els/po-demo/module01/mod_001_02.htm.Search in Google Scholar

12. WÄRTSILÄ (2019): Wärtsilä Methane number calculator. Retrieved from https://www.wartsila.com/products/marine-oil-gas/gas-solutions/methane-number-calculator.Search in Google Scholar

13. ISO/TR 22302:2014 (2014): Natural gas. Calculation of methane number.Search in Google Scholar

14. WÄRTSILÄ (2015): Wärtsilä GasReformer. Retrieved from https://www.offshore-europe.co.uk/__novadocuments/31687?v=635089663131000000.Search in Google Scholar

15. Gatsenko NA., Serbin SI. (1995). Arc plasmatrons for burning fuel in industrial installations, Glass and Ceramics, vol. 51 (11-12), 383–38610.1007/BF00679821Search in Google Scholar

16. Matveev I. B., Tropina A. A., Serbin S. I., Kostyuk V. Y. (2008): Arc modeling in a plasmatron channel. IEEE Trans. Plasma Sci., No.1, Vol. 36, part 2, 293–298.10.1109/TPS.2007.913876Search in Google Scholar

17. Serbin SI, Matveev IB, Goncharova MA (2014). Plasma Assisted Reforming of Natural Gas for GTL. Part I, IEEE Trans. Plasma Sci., vol. 42, no. 12, pp. 3896-390010.1109/TPS.2014.2353042Search in Google Scholar

18. Matveev I., Matveeva S., Serbin S. (2007): Design and Preliminary Result of the Plasma Assisted Tornado Combustor. Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, AIAA 2007-5628, Vol. 6, 6091-6098.10.2514/6.2007-5628Search in Google Scholar

19. Matveev I., Serbin S. (2012): Investigation of a reverse-vortex plasma assisted combustion system. Proc. of the ASME 2012 Heat Transfer Summer Conf., Puerto Rico, USA, HT2012-58037, 133-140.10.1115/HT2012-58037Search in Google Scholar

20. Matveev I., Serbin S., (2006): Experimental and Numerical Definition of the Reverse Vortex Combustor Parameters. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2006-0551, 6662-6673.10.2514/6.2006-551Search in Google Scholar

21. Cherednichenko O., Serbin S. (2018): Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat. J. Marine. Sci. Appl. No.1, Vol. 17, 122-130.10.1007/s11804-018-0012-xSearch in Google Scholar

22. Serbin S.I. (2006): Features of liquid-fuel plasma-chemical gasification for diesel engines. IEEE Trans. Plasma Sci., 6, No.vol. 34, 2488-2496.10.1109/TPS.2006.876422Search in Google Scholar

23. Serbin S.I. (1998): Modeling and Experimental Study of Operation Process in a Gas Turbine Combustor with a Plasma-Chemical Element. Combustion Science and Technology, Vol. 139, 137-158.10.1080/00102209808952084Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie