Uneingeschränkter Zugang

Model of a Ducted Axial-Flow Hydrokinetic Turbine – Results of Experimental and Numerical Examination


Zitieren

1. Abe K., Nishida M.; Sakurai A.; Ohya Y.; Kihara H.; Wada E.; Sato K., Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser, Journal of Wind Engineering Industrial Aerodynamics, v. 93 (2005) p. 951-970.10.1016/j.jweia.2005.09.003Search in Google Scholar

2. Bahaj A.S., Molland J.R., Chaplin J.R., Batten W.M.J., Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and towing tank, Renewable Energy 32 (2007) 407-426.10.1016/j.renene.2006.01.012Search in Google Scholar

3. Bavanish B., Thyagarajan., Optimization of power coefficient on a horizontal axis wind turbine ising bem theory, Renewable and Sustainable Energy Reviews 26 (2013) 169-182.10.1016/j.rser.2013.05.009Search in Google Scholar

4. Clarke J.A., Connor G., Grant A.D., Johnstone C.M., Design and testing of a contra-rotating tidal current turbine, Energy Systems Research Unit, University of Strathclyde, Glasgow UK.Search in Google Scholar

5. Clarke J.A., Connor G., Grant A.D., Johnstone C.M., Mackenzie D., Development of a Contra-Rotating Tidal Current Turbine and Analysis of Performance, Energy Systems Research Unit, University of Strathclyde, Glasgow UK.Search in Google Scholar

6. DØssing M., Vortex Lattice Modelling of Winglets on Wind Turbines Blades, Wind Energy Department – RisØ & Department of Mechanical Engineering – DTU, Denmark 2007, ISBN 978-87-550-3633-8.Search in Google Scholar

7. Durand W., F., “Aerodynamic Theory”, Dover Publication, INC., New York.Search in Google Scholar

8. Glauert H., „Airplane propellers”, In Durand W.F. (ed.) Aerodynamics Theory, 4th edn., Springer, Berlin 1935.10.1007/978-3-642-91487-4_3Search in Google Scholar

9. Góralczyk A., Extending the vortex lattice method by the procedure calculating the shape of the vortex wake downstream of the rotor (in Polish), Scientific Report of IF-FM PAS, No. 662/2012.Search in Google Scholar

10. Góralczyk A., Numerical algorithm of the procedure taking into account the effect of walls bounding the measuring space of the cavitation tunnel on the performance of hydrokinetic turbines (in Polish), Scientific Report of IF-FM PAS, No. 1012/2014.Search in Google Scholar

11. Góralczyk A., Chaja P., Preliminary laboratory tests and analysis of results oriented on verification of the developed software (in Polish), Scientific Report of IF-FM PAS, No. 759/09.Search in Google Scholar

12. Góralczyk A., Chaja P., Adamkowski A., Method for Calculating Performance Characteristics of Hydrokinetic Turbines, TASK QUARTERLY 15 No 1, 1001–1015, 2011.Search in Google Scholar

13. Gumułka S., Knap T. Strzelczyk P., Szczerba Z., „Wind Power Engineering” (in Polish), Uczelniane Wydawnictwo Naukowo-Dydaktyczne, Krakow 2006, ISBN 83-89388-79-0.Search in Google Scholar

14. Hankin D., Graham J. M. R., An unsteady vortex lattice methods model of a horizontal axis wind turbine operating in an upstream rotor wake, Journal of Physics: Conference Series 555 (2014).10.1088/1742-6596/555/1/012049Search in Google Scholar

15. Hantoro R., Utama I.K.A.P., Sulisetyono E., Sulisetyono A., An Experimental Investigations of Variable-Pitch Vertical-Axial Ocean Current Turbines, ITB J. Eng. Sci., Vol. 43, No. 1, 2011, 27-40.10.5614/itbj.eng.sci.2011.43.1.3Search in Google Scholar

16. Javaherchi T., Stelzenmuller N., Aliseda A., Experymental and Numerical Analysis of the Doe Refernce Model 1 Horizontal Axis Hydrokinetic Turbines, Proceedings of the 1st Marine Energy Technology Symposium METS2013, Washington.Search in Google Scholar

17. Kaniecki M., Hydrodynamic analysis of propeller pump operation using the surface singularity distribution method (in Polish). Ph.D. thesis, IF-FM PAS, Gdansk 2004.Search in Google Scholar

18. Khan M.J., Bhuyan G., Iqubal M.T., Quaicoe J.E., Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Applied Energy 86 1823-1835, 2009.10.1016/j.apenergy.2009.02.017Search in Google Scholar

19. Kirke B., Developments in ducted woter current turbines, Tidal Paper 2006Search in Google Scholar

20. Koh W.X.M., Ng E.Y.K., „Effects of Reynolds number and different tip loss models on the accuracy of BEM applied to tidal turbines as compared to experiments”, Ocean Engineering 111 (2016) 104-115.10.1016/j.oceaneng.2015.10.042Search in Google Scholar

21. Koyama K., Comparative calculations of Propellers by Surface Panel Method, Ship Research Institute, September 1993.Search in Google Scholar

22. Lewis R. I., Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems, Cambridge University Press 1991.10.1017/CBO9780511529542Search in Google Scholar

23. Liu S., Janajreh I., „Development and application of an improved blade element momentum method model on horizontal axis wind turbines”, International Journal of Energy and Environmental Engineering 2012.10.1186/2251-6832-3-30Search in Google Scholar

24. Logo L.I., Ponta F.L., Chen L., Advances and trends in hydrokinetic turbine systems, Energy for Sustainable Development 14 (2010) 287-296.10.1016/j.esd.2010.09.004Search in Google Scholar

25. McNae D. M., Unstedy Hydrodynamics of Tidal Stream Turbines, Department of Aeronautics Imperial College London, 2013.Search in Google Scholar

26. Pietkiewicz P., Miąskowski W., Nalepa K., Kowalczuk K., Analysing velocity distribution in the wind turbine diffuser (in Polish), Agenda Wydawnicza SIMP, Mechanik, 7/2015, pp. 655-662.10.17814/mechanik.2015.7.282Search in Google Scholar

27. Rankine W.J.M., „On The Mechanical Principles of The Action of Propellers”, Trans Inst Naval Architects, Britisch, 1865;6(13).Search in Google Scholar

28. Rohatyński R. Theoretical foundations for modelling flows past solid bodies using the method of singularities (in Polish), Prace Naukowe Instytutu Konstrukcji I Eksploatacji Maszyn Politechniki Wrocławskiej, No. 59, 1993.Search in Google Scholar

29. Rourke F., Boyle F., Reynolds A., Tidal energy update 2009, Applied Energy 87 (2010) 398-409.10.1016/j.apenergy.2009.08.014Search in Google Scholar

30. Shahsavarifard M., Bibeau E.L., Birjandi A.H., Performance gain of horizontal axis hydrokinetic turbines using shroud, MTS 2013.Search in Google Scholar

31. da Silva P. A. S. F., Shinomiya L. D., de Oliveira T. F., Vaz J. R. P., Mesquita A. L. A., Junior A. C. P. B., Design of Hydrokinetic Turbine Blades Considering Cavitation, The 7th International Conference on Applied Energy – ICAE2015, Energy Procedia 75 (2015) 277-282.10.1016/j.egypro.2015.07.343Search in Google Scholar

32. Xu W., Numerical Techniques for the Design and Prediction of Performance of Marine Turbines and Propellers, Ocean Engineering Group, Report no. 10-06, August 2010.Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie