Uneingeschränkter Zugang

Thermo-Economic Analysis and Environmental Aspects of Absorption Refrigeration Unit Operation Onboard Marine Vehicles: Ro- Pax Vessel Case Study

 und    | 23. Okt. 2018

Zitieren

1. IMO, Third IMO GHG study 2014. Executive summary and final report, MEPC 67/6/INF.3. 2014: International Maritime Organization, London.Search in Google Scholar

2. Peters, G.P., et al., The challenge to keep global warming below 2 [deg]C. Nature Clim. Change, 2013. 3(1): p. 4-6.10.1038/nclimate1783Search in Google Scholar

3. Boden, T.A., R.J. Andres, and G. Marland, in Global, Regional, and National Fossil-Fuel CO2 Emissions, Period of Record 1751–20102013, Carbon Dioxide Information Analysis Center (CDIA C), U.S. department of energy.Search in Google Scholar

4. Salvatore, A., Ocean sustainability in the 21 century. 2015: ISBN 978-1-107-10013-8, Cambridge University press, United Kingdom..Search in Google Scholar

5. EC. European Union (EU) legislations to control fluorinated greenhouse gases (F-gases). 2017. Available: https://ec.europa.eu/clima/policies/f-gas/legislation_en (Accessed 5 July 2017).Search in Google Scholar

6. Ammar, N.R. and I.S. Seddiek, Eco-environmental analysis of ship emission control methods: Case study RO-RO cargo vessel. Ocean Engineering, 2017. 137: p. 166 - 173.10.1016/j.oceaneng.2017.03.052Search in Google Scholar

7. El Gohary, M.M., N.R. Ammar, and I.S. Seddiek, Steam and SOFC based reforming options of PEM fuel cells for marine applications. Brodogradnja, 2015. 66(2)(2): p. 61-76.Search in Google Scholar

8. Seddiek, I.S., An overview: Environmental and economic strategies for improving quality of ships exhaust gases. International Journal of Maritime Engineering, 2015. 157: p. 53-64.10.3940/rina.ijme.2015.a1.311Search in Google Scholar

9. Salmi, W., et al., Using waste heat of ship as energy source for an absorption refrigeration system. Applied Thermal Engineering, 2017. 115: p. 501-516.10.1016/j.applthermaleng.2016.12.131Search in Google Scholar

10. Cao, T., et al., Performance investigation of engine waste heat powered absorption cycle cooling system for shipboard applications. Applied Thermal Engineering, 2015. 90: p. 820-830.10.1016/j.applthermaleng.2015.07.070Search in Google Scholar

11. Eyring, V., et al., Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research: Atmospheres, 2005. 110(D17): p. D17306, doi:10.1029/2004JD005620.10.1029/2004JD005620Open DOISearch in Google Scholar

12. Ouadha, A. and Y. El-Gotni, Integration of an ammonia-water absorption refrigeration system with a marine diesel engine: A thermodynamic study. Procedia Computer Science, 2013. 19: p. 754-761.10.1016/j.procs.2013.06.099Search in Google Scholar

13. Seddiek, I.S., M. Mosleh, and A.A. Banawan, Thermo-economic approach for absorption air condition onboard high-speed crafts. International Journal of Naval Architecture and Ocean Engineering, 2012. 4(4): p. 460-476.10.2478/IJNAOE-2013-0111Search in Google Scholar

14. Riffat, S.B. and G. Qiu, Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. Applied Thermal Engineering, 2004. 24(14–15): p. 1979-1993.10.1016/j.applthermaleng.2004.02.010Search in Google Scholar

15. IMO, Prevention of air pollution from ships. Second IMO GHG Study, MEPC 59, 2009.Search in Google Scholar

16. Táboas, F., M. Bourouis, and M. Vallès, Analysis of ammonia/water and ammonia/salt mixture absorption cycles for refrigeration purposes in fishing ships. Applied Thermal Engineering, 2014. 66(1–2): p. 603-611.10.1016/j.applthermaleng.2014.02.065Search in Google Scholar

17. Austral. AUTO EXPRESS 88. 2008. Available: http://www.austal.com/sites/default/files/data-sheet/Auto_Express_88_340_and_341.pdf (Accessed 15 June 2017).Search in Google Scholar

18. Seddiek, I.S., Application of fuel-saving strategies onboard high-speed passenger ships. Journal of Marine Science and Technology, 2016. 21(3): p. 493-500.10.1007/s00773-016-0371-4Search in Google Scholar

19. MTU. Marine Diesel Engines 20V 8000 M71R/71/71L for Fast Vessels with High Load Factors (1B) 2017. Available: https://mtu-online-shop.com/media/files_public/c9c121a2e1f6df696c45fdbe3ca03489/3231631_MTU_Marine_spec_20V8000M71-R-L_1B_1_14.pdf (Accessed 16 April 2017.Search in Google Scholar

20. Carrier. Single-Effect Hot Water-Fired Absorption Chillers (16LJ 11-53). 2016. Available: https://climamarket.bg/wp-content/uploads/Tech-Spec-Carrier-16LJ.pdf (Accessed 10 May 2017).Search in Google Scholar

21. Srikhirin, P., S. Aphornratana, and S. Chungpaibulpatana, A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 2001. 5(4): p. 343-372.10.1016/S1364-0321(01)00003-XSearch in Google Scholar

22. Yan, X., et al., A novel absorption refrigeration cycle for heat sources with large temperature change. Applied Thermal Engineering, 2013. 52(1)(1): p. 179-186.10.1016/j.applthermaleng.2012.11.041Search in Google Scholar

23. Hong, D., et al., A novel absorption refrigeration cycle. Applied Thermal Engineering, 2010. 30 (14-15): p. 2045-2050.10.1016/j.applthermaleng.2010.05.010Search in Google Scholar

24. Onan, C., D.B. Ozkan, and S. Erdem, Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications. 2010. 35 (12): p. 5277 - 5285.10.1016/j.energy.2010.07.037Search in Google Scholar

25. Adewusi, S.A. and S.M. Zubair, Second law based thermodynamic analysis of ammonia–water absorption systems. Energy Conversion and Management, 2004. 45(15-16): p. 2355 - 2369.10.1016/j.enconman.2003.11.020Search in Google Scholar

26. ASHRAE, Handbook of fundamentals, 2009, Atlanta: ASHRAE.Search in Google Scholar

27. Florides, G.A., et al., Design and construction of a LiBr–water absorption machine. Energy Conversion and Management, 2003. 44(15): p. 2483-2508.10.1016/S0196-8904(03)00006-2Search in Google Scholar

28. Pátek, J. and J. Klomfar, A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range. International Journal of Refrigeration, 2006. 29(4): p. 566-578.10.1016/j.ijrefrig.2005.10.007Search in Google Scholar

29. Pátek, J. and J. Klomfar, A simple formulation for thermodynamic properties of steam from 273 to 523 K, explicit in temperature and pressure. International Journal of Refrigeration, 2009. 32(5): p. 1123-1125.10.1016/j.ijrefrig.2008.12.010Search in Google Scholar

30. ICF. Towboat emission reduction feasibility study. U.S. Environmental Protection Agency. 2009.Search in Google Scholar

31. Hunt, E. and B. Butman. Marine engineering economics and cost analysis. Cornell Maritime Press, Centreville, Maryland. 1995.Search in Google Scholar

32. Wonchala, J., M. Hazledine, and K. Goni Boulama, Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine. Energy, 2014. 65: p. 272-284.10.1016/j.energy.2013.11.087Search in Google Scholar

33. Talukdar, K. and T.K. Gogoi, Exergy analysis of a combined vapor power cycle and boiler flue gas driven double effect water–LiBr absorption refrigeration system. Energy Conversion and Management, 2016. 108: p. 468-477.10.1016/j.enconman.2015.11.020Search in Google Scholar

34. Gogoi, T.K. and K. Talukdar, Thermodynamic analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system. Energy Conversion and Management, 2014. 78: p. 595-610.10.1016/j.enconman.2013.11.035Search in Google Scholar

35. Mortazavi, A., et al., Enhancement of APCI cycle efficiency with absorption chillers. Energy, 2010. 35(9): p. 3877-3882.10.1016/j.energy.2010.05.043Search in Google Scholar

36. Palacín, F., C. Monné, and S. Alonso, Improvement of an existing solar powered absorption cooling system by means of dynamic simulation and experimental diagnosis. Energy, 2011. 36(7): p. 4109-4118.10.1016/j.energy.2011.04.035Search in Google Scholar

37. Bunkerworld. Fuel prices. 2018. Available: http://www.bunkerworld.com/prices/ (Accessed 2 Sep. 2018).10.1016/j.focat.2018.09.005Search in Google Scholar

38. Banawan, A.A., M.M. El Gohary, and I.S. Sadek, Environmental and economic benefits of changing from marine diesel oil to natural-gas fuel for short-voyage high-power passenger ships. Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 2010. 224(M2): p. 103-113.10.1243/14750902JEME181Search in Google Scholar

39. ICF. Current methodologies in preparing mobile source port-related emission inventories. U.S. Environmental Protection Agency. 2009.Search in Google Scholar

40. Gupta, A., et al., Economic and thermodynamic study of different cooling options: A review. Renewable and Sustainable Energy Reviews, 2016. 62: p. 164-194.10.1016/j.rser.2016.04.035Search in Google Scholar

41. Mikelis, N.E., A statistical overview of ship recycling. J. Marit. Affairs, 2008. 7(1): p. 227–239.10.1007/BF03195133Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie