Uneingeschränkter Zugang

Organic Milk as Medium for Lactic Acid Bacteria Growth: a Review


Zitieren

Aasen, I. M., Møretrø, T., Katla, T., Axelsson, L., & Storrø, I. (2000). Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biotechnol., 53, 159-166. DOI: 10.1007/s002530050003.Search in Google Scholar

Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S., … Ariff, A. B. (2017). Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. Rsc. Advances, 7(47), 29395-29420. DOI: 10.1039/C6RA24579J.Search in Google Scholar

Actor, J. K., Hwang, S. A., & Kruzel, M. L. (2009). Lactoferrin as a natural immune modulator. Curr. Parhm. Des., 15(17), 1956-1973. DOI: 10.2174/138161209788453202.Search in Google Scholar

Ayivi, R. D., & Ibrahim, S. A. (2022). Lactic acid bacteria: an essential probiotic and starter culture for the production of yoghurt. Int. J. Food Sci. Technol. , 57(11), 7008-7025. DOI: 10.1111/ijfs.16076.Search in Google Scholar

Ayivi, R. D., Ibrahim, S. A., Krastanov, A., Somani, A., & Siddiqui, S. A. (2022). The impact of alternative nitrogen sources on the growth and viability of Lactobacillus delbrueckii ssp. bulgaricus. J. Dairy Sci., 105(10), 7986–7997. DOI: 10.3168/jds.2022-21971.Search in Google Scholar

Aspmo, S. I., Horn, S. J., & Eijsink, V. G. (2005). Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochem., 40(12), 3714-3722. DOI: 10.1016/j.procbio.2005.05.004.Search in Google Scholar

Atilola, O. A., Gyawali, R., Aljaloud, S. O., & Ibrahim, S. A. (2015). Use of phytone peptone to optimize growth and cell density of Lactobacillus reuteri. Foods, 4(3), 318-327. DOI: 10.3390/foods4030318.Search in Google Scholar

Bai, Y., Zhang, B., Zhang, X., Zhao, S., Qie, M., Wang, Q., ... Guo, J. (2022). Discrimination between organic and conventional raw and UHT milk by fatty acid profile in Inner Mongolia, China. Int. J. of Dairy Technol., 75(1), 94-105. DOI: 10.1111/1471-0307.12811.Search in Google Scholar

Belusko, A., Aumeistere, L., & Ciprovica, I. (2022). Oligosaccharides in human milk, achievements in analysis: a review. Res. Rural Dev., 37, 100-105. DOI: 10.22616/rrd.28.2022.015.Search in Google Scholar

Bergamo, P., Fedele, E., Iannibelli, L., & Marzillo, G. (2003). Fat-soluble vitamin contents and fatty acid composition in organic and conventional Italian dairy products. Food Chem., 82(4), 625–631. DOI: 10.1016/S0308-8146(03)00036-0.Search in Google Scholar

Bhinder, G., Allaire, J. M., Garcia, C., Lau, J. T., Chan, J. M., Ryz, N. R., ... Vallance, B. A. (2017). Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Sc. Rep., 7(1), 1-15. DOI: 10.1038/srep45274.Search in Google Scholar

Bilik, K., & Łopuszańska-Rusek, M. (2010). Effect of organic and conventional feeding of Redand-White cows on productivity and milk composition. Ann. Anim. Sci., 10(4), 441-458.Search in Google Scholar

Blattel, V., Wirth, K., Claus, H., Schlott, B., Pfeiffer, P., & König, H. (2009). A lytic enzyme cocktail from Streptomyces sp. B578 for the control of lactic and acetic acid bacteria in wine. Appl. Microbiol. Biotechnol., 83, 839-848. DOI: 10.1007/s00253-009-1926-7.Search in Google Scholar

Borgonovi, T. F., Virgolin, L. B., Janzantti, N. S., Casarotti, S. N., & Penna, A. L. B. (2022). Fruit bioactive compounds: Effect on lactic acid bacteria and on intestinal microbiota. Food Res. Int., 161. Elsevier Ltd. DOI: 10.1016/j.foodres.2022.111809.Search in Google Scholar

Breza-Boruta, B., Ligocka, A., & Bauza-Kaszewska, J. (2022). Natural bioactive compounds in organic and conventional fermented food. Mol., 27(13). DOI: 10.3390/molecules27134084.Search in Google Scholar

Brodziak, A., Król, J., Litwińczuk, Z., & Barłowska, J. (2018). Differences in bioactive protein and vitamin status of milk from certified organic and conventional farms. Int. J. Dairy Technol., 71(2), 321–332. DOI: 10.1111/1471-0307.12462.Search in Google Scholar

Brodziak, A., Wajs, J., Zuba-Ciszewska, M., Król, J., Stobiecka, M., & Jańczuk, A. (2021). Organic versus conventional raw cow milk as material for processing. In Animals 11(10). MDPI. DOI: 10.3390/ani11102760Search in Google Scholar

Bulca, S., Umut, F., & Koç, A. (2022). The influence of microbial transglutaminase on camel milk yogurt. LWT, 160, 113339. DOI: 10.1016/j.lwt.2022.113339.Search in Google Scholar

Burns, P., Vinderola, G., Molinari, F., & Reinheimer, J. (2008). Suitability of whey and buttermilk for the growth and frozen storage of probiotic lactobacilli. Int. J. Dairy Technol., 61(2), 156-164. DOI: 10.1111/j.1471-0307.2008.00393.x.Search in Google Scholar

Butler, G., Nielsen, J. H., Slots, T., Seal, C., Eyre, M. D., Sanderson, R., … Leifert, C. (2008). Fatty acid and fat-soluble antioxidant concentrations in milk from high-and low-input conventional and organic systems: seasonal variation. J. Sci. Food Agric., 88, 1431–1441. DOI: 10.1002/jsfa.3235.Search in Google Scholar

Castro-Gómez, P., Rodríguez-Alcalá, L. M., Monteiro, K. M., Ruiz, A. L., Carvalho, J. E., … Fontecha, J. (2016). Antiproliferative activity of buttermilk lipid fractions isolated using food grade and non-food grade solvents on human cancer cell lines. Food Chem., 212, 695-702. DOI: 10.1016/j.foodchem.2016.06.030.Search in Google Scholar

Chervaux, C., Ehrlich, S. D., & Maguin, E. (2000). Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl. Envirom. Microbiol., 66(12), 5306-5311. DOI: 10.1128/AEM.66.12.5306-5311.2000.Search in Google Scholar

Chopin, A. (1993). Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Reviews, 12(1-3), 21-37. DOI: 10.1111/j.1574-6976.1993.tb00011.Search in Google Scholar

Chung, I. M., Kim, J. K., Yarnes, C. T., An, Y. J., Kwon, C., Kim, S. Y., … Kim, S. H. (2019). Fatty acid- and amino acid-specific isotope analysis for accurate authentication and traceability in organic milk. J. Agric. Food Chem., 67(2), 711–722. DOI: 10.1021/acs.jafc.8b05063.Search in Google Scholar

Cunningham, F. E., Proctor, V. A., & Goetsch, S. J. (1991). Egg-white lysozyme as a food preservative: an overview. Worlds Poultr. Sci. J., 47(2), 141-163. DOI: 10.10.79/WPS19910015.Search in Google Scholar

Cutrim, C. S., de Barros, R. F., da Costa, M. P., Franco, R. M., Conte-Junior, C. A., & Cortez, M. A. S. (2016). Survival of Escherichia coli O157: H7 during manufacture and storage of traditional and low lactose yogurt. LWT, 70, 178-184. DOI: 10.1016/j.lwt.2016.02.047.Search in Google Scholar

Delfini, C., Cersosimo, M., Del Prete, V., Strano, M., Gaetano, G., Pagliara, A., & Ambrò, S. (2004). Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts. J. Agric. Food Chem., 52(7), 1861-1866. DOI: 10.1021/jf034824m.Search in Google Scholar

Delgadillo-Puga, C., Sánchez-Muñoz, B., Nahed-Toral, J., Cuchillo-Hilario, M., Díaz-Martínez, M., Solis-Zabaleta, R., ... Castillo-Domíguez, R. M. (2014). Fatty acid content, health and risk indices, physicochemical composition, and somatic cell counts of milk from organic and conventional farming systems in tropical south-eastern Mexico. Trop. Anim. Health Prod., 46, 883-888. DOI: 10.1007/s11250-014-0581-x.Search in Google Scholar

Delgado-Fernández, P., Corzo, N., Olano, A., Hernández-Hernández, O., & Moreno, F. J. (2019). Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. Int. Dairy J., 89, 77–85. DOI: 10.1016/j.idairyj.2018.09.003.Search in Google Scholar

Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2007). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Lait, 87(1), 21–38. DOI: 10.1051/lait:2006023.Search in Google Scholar

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2010). Scientific opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J.,8(10), 1763.Search in Google Scholar

Evers, J. M. (2004). The milk fat globule membrane – compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J., 14(8), 661-674. DOI: 10.1016/j.idairyj.2004.01.005.Search in Google Scholar

Fan, X., Du, L., Xu, J., Shi, Z., Zhang, T., Jiang, X., Zeng, X., Wu, Z., & Pan, D. (2022a). Effect of single probiotics Lacticaseibacillus casei CGMCC1.5956 and Levilactobacillus brevis CGMCC1.5954 and their combination on the quality of yogurt as fermented milk. LWT – Food Sci.Technol., 163. DOI: 10.1016/j.lwt.2022.113530.Search in Google Scholar

Fan, X., Li, X., Du, L., Li, J., Xu, J., Shi, Z., Li, C., Tu, M., Zeng, X., Wu, Z., & Pan, D. (2022b). The effect of natural plant-based homogenates as additives on the quality of yogurt: A review. In Food Biosci., 49. Elsevier Ltd. DOI: 10.1016/j.fbio.2022.101953.Search in Google Scholar

Farag, M. A., Jomaa, S. A., El-wahed, A. A., & El-seedi, H. R. (2020). The many faces of kefir fermented dairy products: quality characteristics, flavour chemistry, nutritional value, health benefits, and safety. Nutrients, 12(2). DOI: 10.3390/NU12020346.Search in Google Scholar

Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12. DOI: 10.1080/19490976.2020.1801944.Search in Google Scholar

Ferreiro, T., Gayoso, L., & Rodríguez-Otero, J. L. (2015). Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk. J. Dairy Sci., 98(1), 9–14. DOI: 10.3168/jds.2014-8244.Search in Google Scholar

Florence, A. C. R., Da Silva, R. C., do Espírito Santo, A. P., Gioielli, L. A., Tamime, A. Y., & de Oliveira, M. N. (2009). Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures. Dairy Sci. Technol., 89(6), 541-553. DOI: 10.1051/dst/2009030.Search in Google Scholar

Florence, A.C., Béal, C., Sliva, R. C, Bogsan, C. S. B., Pilleggi, A. L., Gioielli, L. A., Oliviera, M.N. (2012) Fatty acid profile trans-ocatadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermente milks. Food Chem., 135(4), 2207–2214. https://doi.org/10/1016/j.foodchem.2012.07.026.Search in Google Scholar

Franco, I., Castillo, E., Pérez, M. D., Calvo, M., & Sánchez, L. (2010). Effect of bovine lactoferrin addition to milk in yogurt manufacturing. J. Dairy Sci., 93(10), 4480–4489. DOI: 10.3168/jds.2009-3006.Search in Google Scholar

Garault, P., Letort, C., Juillard, V., & Monnet, V. (2000). Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Appl. Environ. Microbiol., 66(12), 5128-5133. DOI: 10.1128/AEM.66.12.5128-5133.2000.Search in Google Scholar

Gorissen, L., Taes, K., Weckx, S., Dannenberger, D., Leroy, F., De Vuyst, L., De Smet, S. (2010). Production of conjugated linolic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl. Microbiol. Biotechnol., 87(6), 2257–2266. DOI: 10.1007/s00253-010-2713-1.Search in Google Scholar

Gu, Y., Li, X., Xiao, R., Dudu, O. E., Yang, L., & Ma, Y. (2020). Impact of Lactobacillus paracasei IMC502 in coculture with traditional starters on volatile and non-volatile metabolite profiles in yogurt. Process Biochem., 99, 6169. DOI: 10.1016/j.procbio.2020.07.003.Search in Google Scholar

Guzzo, F., Cappello, M. S., Azzolini, M., Tosi, E., & Zapparoli, G. (2011). The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria. Int. J. Food Microbiol., 148(3), 184-190. DOI: 10.1016/j.ijfoodmicro.2011.05.023.Search in Google Scholar

Hayek, S. A., & Ibrahim, S. A. (2013). Current limitations and challenges with lactic acid bacteria: A Review. Food Nutr. Sci., 04(11), 73–87. DOI: 10.4236/fns.2013.411a010.Search in Google Scholar

Hayek, S. A., Gyawali, R., Aljaloud, S. O., Krastanov, A., & Ibrahim, S. A. (2019). Cultivation media for lactic acid bacteria used in dairy products. J. Dairy Res., 86(4), 490-502. DOI: 10.1017/S002202991900075X.Search in Google Scholar

Hébert, E. M., Raya, R. R., & Giori, G. S. D. (2004a). Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Curr. Microbiol., 49, 341-345. DOI: 10.1007/s00284-004-4357-9.Search in Google Scholar

Hébert, E. M., Raya, R. R., & Savoy de Giori, G. (2004b). Evaluation of minimal nutritional requirements of lactic acid bacteria used in functional foods. Environ. Microbiol: Methods Protoc., 139-148. DOI: 10.1385/1-59259-765-3:139.Search in Google Scholar

Hoefnagel, M. H., Starrenburg, M. J., Martens, D. E., Hugenholtz, J., Kleerebezem, M., Van Swam, I. I., ... Snoep, J. L. (2002). Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiol., 148(4), 1003-1013. DOI: 10.1099/00221287-148-4-1003.Search in Google Scholar

Hofi, M., Tanboly, E. S., & Abd-Rabou, N. S. (2011). Industrial application of lipases in cheese making: a review. Int. J. Food Saf., 13, 293-302.Search in Google Scholar

Horn, S. J., Aspmo, S. I., & Eijsink, V. G. H. (2005). Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. J. Appl. Microbiol., 99(5), 1082-1089. DOI: 10.1111/j.1365-2672.2005.02702.xSearch in Google Scholar

Ibrahim, H. R., Higashiguchi, S., Juneja, L. R., Kim, M., & Yamamoto, T. (1996). A structural phase of heat-denatured lysozyme with novel antimicrobial action. J. Agric. Food Chem., 44(6), 1416-1423. DOI: 10.1021/jf9507147.Search in Google Scholar

Yoo, I. K., Chang, H. N., Lee, E. G., Chang, Y. K., & Moon, S. H. (1997). Effect of B vitamin supplementation on lactic acid production by Lactobacillus casei. J. Ferment. Bioeng., 84(2), 172-175. DOI: 10.1016/S0922-338X(97)82551-2.Search in Google Scholar

Juillard, V., Le Bars, D., Kunji, E. R., Konings, W. N., Gripon, J.-C., Richard, J., … Biol, J. (1995). Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol., 61(8), 3024-3030. DOI: 10.1128/aem.61.8.3024-3030.1995.Search in Google Scholar

Katz, M., Medina, R., Gonzalez, S., & Oliver, G. (2002). Esterolytic and lipolytic activities of lactic acid bacteria isolated from ewe’s milk and cheese. J. Food Protect., 65(12), 1997-2001. DOI: 10.4315/0362-028X-65.12.1997Search in Google Scholar

Kim, W. S., Ohashi, M., Tanaka, T., Kumura, H., Kim, G. Y., Kwon, I. K., ... Shimazaki, K. I. (2004). Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. Biometals, 17, 279-283. DOI: 10.1023/B:BIOM.0000027705.57430.f1.Search in Google Scholar

Koperska, N., Kędzierska-Matysek, M., Litwińczuk, Z., & Wójcik-Saganek, A. (2013). Correlation between the content of macro-and microelements in milk obtained from organic and conventional farms. In Proceed. Conf. Mater. XVI Lublin Sci. Magn. Conf.— Chem. Elements Health, Lublin, Poland 64.Search in Google Scholar

Kouřimská, L., Legarová, V., Panovská, Z., & Pánek, J. (2014). Quality of cows’ milk from organic and conventional farming. Czech J. Food Sci., 32(4), 398-405. DOI: 10.17221/510/2012-CJFS.Search in Google Scholar

Kucevic, D., Trivunovic, S., Bogdanovic, V., Cobanovic, K., Jankovic, D., & Stanojevic, D. (2016). Composition of raw milk from conventional and organic dairy farming. Biotechnol. Anim. Husb., 32(2), 133–143. DOI: 10.2298/bah1602133k.Search in Google Scholar

Kuczyńska, B., Puppel, K., Gołȩbiewski, M., Metera, E., Sakowski, T., & Słoniewski, K. (2012). Differences in whey protein content between cow’s milk collected in late pasture and early indoor feeding season from conventional and organic farms in Poland. J. Sci. Food Agricul., 92(14), 2899–2904. DOI: 10.1002/jsfa.5663.Search in Google Scholar

Lechiancole, T., Ricciardi, A., & Parente, E. (2002). Optimization of media and fermentation conditions for the growth of Lactobacillus sakei. Annals of microbiology, 52(3), 257-274.Search in Google Scholar

Letort, C., & Juillard, V. (2001). Development of a minimal chemically‐defined medium for the exponential growth of Streptococcus thermophilus. J. Appl. Microbiol., 91(6), 1023-1029. DOI: 10.1046/j.1365-2672.2001.01469.x.Search in Google Scholar

Li, H., Song, W., Liu, T., Xu, S., Zhang, S., Zhang, Y., ... Yu, J. (2022). Developing novel synbiotic yoghurt with Lacticaseibacillus paracasei and lactitol: Investigation of the microbiology, textural and rheological properties. Int. Dairy J., 135, 105475. DOI: 10.1016/j.idairyj.2022.105475.Search in Google Scholar

Li, S., Tian, Y., Jiang, P., Lin, Y., Liu, X., & Yang, H. (2021). Recent advances in the application of metabolomics for food safety control and food quality analyses. Crit. Rev. Food Sci. Nutr., 61(9), 1448-1469. DOI: 10.1080/10408398.2020.1761287.Search in Google Scholar

Liburdi, K., Benucci, I., & Esti, M. (2014). Lysozyme in wine: An overview of current and future applications. Compr. Rev. Food Sci. Food Saf., 13(5), 1062–1073. DOI: 10.1111/1541-4337.12102.Search in Google Scholar

Liu, E., Zheng, H., Shi, T., Ye, L., Konno, T., Oda, M., … Ji, Z. S. (2016). Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation. Int. Dairy J., 56, 141–150. DOI: 10.1016/j.idairyj.2016.01.019.Search in Google Scholar

Liu, N., Pustjens, A. M., Erasmus, S. W., Yang, Y., Hettinga, K., & van Ruth, S. M. (2020). Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chem., 314. DOI: 10.1016/j.foodchem.2019.126153.Search in Google Scholar

Macedo, M. G., Lacroix, C., Gardner, N. J., & Champagne, C. P. (2002). Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int. Dairy J., 12(5), 419-426. DOI: 10.1016/S0958-6946(01)00173-X.Search in Google Scholar

Manuelian, C. L., Vigolo, V., Burbi, S., Righi, F., Simoni, M., & De Marchi, M. (2022). Detailed comparison between organic and conventional milk from Holstein-Friesian dairy herds in Italy. J. Dairy Sci., 105(7), 5561–5572. DOI: 10.3168/jds.2021-21465.Search in Google Scholar

Miller-Catchpole, R., Kot, E., Haloftis, G., Furmanov, S., & Bezkorovainy, A. (1997). Lactoferrin can supply iron for the growth of Bifidobacterium breve. Nut. Res., 17(2), 205-213. DOI: 10.1016/S0271-5317(96)00252-7.Search in Google Scholar

Mohamad Zabidi, N. A., Foo, H. L., Loh, T. C., Mohamad, R., & Abdul Rahim, R. (2020). Enhancement of versatile extracellular cellulolytic and hemicellulolytic enzyme productions by Lactobacillus plantarum RI 11 isolated from Malaysian food using renewable natural polymers. Molecules, 25(11), 2607. DOI: 10.3390/molecules25112607.Search in Google Scholar

Moreira, T. C., da Silva, A. T., Fagundes, C., Ferreira, S. M. R., Cândido, L. M. B., Passos, M., & Krüger, C. C. H. (2017). Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT-Food Sci. Technol., 76, 326-329. DOI: 10.1016/j.lwt.2016.08.033.Search in Google Scholar

Nour, I., Fattouh, F., & El-Adawi, H. (2014). Chemically defined medium for optimization of proteolytic activity of Lactobacillus bulgaricus 761N. Int. J. Life Sci. Med. Res., 4(4), 46–56. DOI: 10.5963/lsmr0404002.Search in Google Scholar

Özen, S., & Özilgen, M. (1992). Effects of substrate concentration on growth and lactic acid production by mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus. J. Chem. Technol. Biotechnol., 54(1), 57-61. DOI: 10.1002/jctb.280540111.Search in Google Scholar

Partanen, L., Marttinen, N., & Alatossava, T. (2001). Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst. Appl. Microbiol., 24(4), 500-506. DOI: 10.1078/0723-2020-00078.Search in Google Scholar

Paz, D., Aleman, R. S., Cedillos, R., Olson, D. W., Aryana, K., Marcia, J., & Boeneke, C. (2022). Probiotic characteristics of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus as influenced by Carao (Cassia grandis). Fermentation, 8(10), 499. DOI: 10.3390/fermentation8100499.Search in Google Scholar

Pederson, J.A., Steele, J.L., Christensen, J.E., Dudley, E.G. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Konings, W.N., Kuipers, O.P., In ’t Veld, J.H.J.H. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. DOI: 10.1007/978-94-017-2027-4_11.Search in Google Scholar

Pernoud, S., Fremaux, C., Sepulchre, A., Corrieu, G., & Monnet, C. (2004). Effect of the metabolism of urea on the acidifying activity of Streptococcus thermophilus. J. Dairy Sci., 87(3), 550–555. DOI: 10.3168/JDS.S0022-0302(04)73196-3.Search in Google Scholar

Pirlo, G., & Lolli, S. (2019). Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy). J. Clean. Prod., 211, 962-971. DOI: 10.1016/j.jclepro.2018.11.070.Search in Google Scholar

Poolman, B., Knol, J., Van Der Does, C., Henderson, P. J., Liang, W. J., Leblanc, G., ... Mus‐Veteau, I. (1996). Cation and sugar selectivity determinants in a novel family of transport proteins. Mol. Microbiol., 19(5), 911-922. DOI: 10.1046/j.1365-2958.1996.397949.x.Search in Google Scholar

Puniya, A., Kumar, S., Puniya, M., & Malik, R. (2017). Fermented milk and dairy products: an overview, Fermented milk and dairy products, 1(3-24), CRC Press, Boca Raton, FL.Search in Google Scholar

Qin, N., Faludi, G., Beauclercq, S., Pitt, J., Desnica, N., Pétursdóttir, Á., ... Stergiadis, S. (2021). Macromineral and trace element concentrations and their seasonal variation in milk from organic and conventional dairy herds. Food Chem., 359, 129865. DOI: 10.1016/j.foodchem.2021.129865.Search in Google Scholar

Ragland, S. A., & Criss, A. K. (2017). From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS pathogens, 13(9), e1006512. DOI: 10.1371/journal.ppat.1006512.Search in Google Scholar

Regula, A. (2007). Free fatty acid profiles of fermented beverages made from ewe’s milk. Lait., 87(1), 71–77. DOI: 10.1051/lait:2006024.Search in Google Scholar

Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J. Dairy Sci., 103(2), 1223–1237. DOI: 10.3168/JDS.2019-17092.Search in Google Scholar

Rocha-Mendoza, D., Kosmerl, E., Miyagusuku-Cruzado, G., Giusti, M. M., Jiménez-Flores, R., & García-Cano, I. (2020). Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. J. Dairy Sci., 103(9), 7707–7718. DOI: 10.3168/jds.2020-18271.Search in Google Scholar

Rodríguez-Bermúdez, R., López-Alonso, M., Miranda, M., Fouz, R., Orjales, I., & Herrero-Latorre, C. (2018). Chemometric authentication of the organic status of milk on the basis of trace element content. Food Chem., 240, 686–693. DOI: 10.1016/j.foodchem.2017.08.011.Search in Google Scholar

Rodríguez-Serrano, G. M., García-Garibay, J. M., Cruz-Guerrero, A. E., Gómez-Ruiz, L. D. C., Ayala-Niño, A., Castañeda-Ovando, A., & González-Olivares, L. G. (2018). Proteolytic system of streptococcus thermophilus. J. Microbiol. Biotechnol., 28(10), 1581–1588. DOI: 10.4014/jmb.1807.07017.Search in Google Scholar

Roesch, M., Doherr, M. G., & Blum, J. W. (2005). Performance of dairy cows on swiss farms with organic and integrated production. J. Dairy Sci., 88(7), 2462-2475. DOI: 10.3168/jds.S0022-0302(05)72924-6.Search in Google Scholar

Sanchez, S., & Demain, A. L. (2008). Metabolic regulation and overproduction of primary metabolites. Microb. Biotechnol., 1(4), 283-319. DOI: 10.1111/j.1751-7915.2007.00015.x.Search in Google Scholar

Sarenkova, I., Sáez-Orviz, S., Rendueles, M., Ciprovica, I., Zagorska, J., & Díaz, M. (2022). Downstream approach routes for the purification and recovery of Lactobionic acid. Foods, 11(4), 583. DOI: 10.3390/foods11040583.Search in Google Scholar

Schwendel, B. H., Wester, T. J., Morel, P. C. H., Fong, B., Tavendale, M. H., Deadman, C., Shadbolt, N. M., … Otter, D. E. (2017). Pasture feeding conventional cows removes differences between organic and conventionally produced milk. Food Chem. 229, 805–813. DOI: 10.1016/j.foodchem.2017.02.104.Search in Google Scholar

Schwendel, B. H., Wester, T. J., Morel, P. C. H., Tavendale, M. H., Deadman, C., Shadbolt, N. M., … Otter, D. E. (2015). Invited review: Organic and conventionally produced milk-An evaluation of factors influencing milk composition. J. Dairy Sci., 98(2), 721–746. DOI: 10.3168/jds.2014-8389.Search in Google Scholar

Selamoglu, Z. (2020). Use of enzymes in dairy industry: a review of current progress. Arch. Razi Inst., 75(1), 131. DOI: 10.22092%2FARI.2019.1 26286.1341.Search in Google Scholar

Shah, N. P. (2000). Probiotic bacteria: Selective enumeration and survival in dairy foods. J. Dairy Sci., 83(4), 894–907. DOI: 10.3168/jds.S0022-0302(00)74953-8.Search in Google Scholar

Shihata, A., & Shah, N. P. (2000). Proteolytic profiles of yogurt and probiotic bacteria. Int. Dairy J., 10(5-6), 401-408. DOI: 10.1016/S0958-6946(00)00072-8.Search in Google Scholar

Sieuwerts, S., Molenaar, D., van Hijum, S. A., Beerthuyzen, M., Stevens, M. J., Janssen, P. W., ... van Hylckama Vlieg, J. E. (2010). Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Apl. Environ. Microbiol., 76(23), 7775-7784. DOI: 10.1128/AEM.01122-10.Search in Google Scholar

Snow, D. R., Ward, R. E., Olsen, A., Jimenez-Flores, R., & Hintze, K. J. (2011). Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. J. Dairy Sci., 94(5), 2201-2212. DOI: 10.3168/jds.2010-3886.Search in Google Scholar

Średnicka-Tober, D., Barański, M., Seal, C. J., Sanderson, R., Benbrook, C., Steinshamn, H., … Leifert, C. (2016). Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta-and redundancy analyses. Br. J. Nutr., 57001, 1043–1060. DOI: 10.1017/S0007114516000349.Search in Google Scholar

Stulova, I., Kabanova, N., Kriščiunaite, T., Laht, T.-M., & Vilu, R. (2011). The effect of milk heat treatment on the growth characteristics of lactic acid bacteria. Agron. Res., 9, 473-478.Search in Google Scholar

Tan, W. S., Budinich, M. F., Ward, R., Broadbent, J. R., & Steele, J. L. (2012). Optimal growth of Lactobacillus casei in a Cheddar cheese ripening model system requires exogenous fatty acids. J. Dairy Sci., 95(4), 1680-1689. DOI: 10.3168/jds.2011-4847.Search in Google Scholar

Toledo, P., Andren, A., & Björck, L. (2002). Composition of raw milk from sustainable production systems. Int. Dairy J., 12(1), 75-80. DOI: 10.1016/S0958-6946(01)00148-0.Search in Google Scholar

Tomita, M., Wakabayashi, H., Shin, K., Yamauchi, K., Yaeshima, T., & Iwatsuki, K. (2009). Twenty-five years of research on bovine lactoferrin applications. Biochim., 91(1), 52-57. DOI: 10.1016/j.biochi.2008.05.021.Search in Google Scholar

Tripuraneni, S. (2011). Effect of nutrient supplements on cucumber fermentation by lactic acid bacteria. Graduate Theses and Dissertations, University of Arkansas.Search in Google Scholar

Tunick, M. H., Van Hekken, D. L., Paul, M., Ingham, E. R., & Karreman, H. J. (2016). Case study: Comparison of milk composition from adjacent organic and conventional farms in the USA. Int. J. Dairy Technol., 69(1), 137–142. DOI: 10.1111/1471-0307.12284.Search in Google Scholar

Utama, C. S., Sulistiyanto, B., & Yolansa, A. B. A. (2020). Quality improvement of fermented wheat pollard with addition of vitamin minerals seen from potential hydrogen content, total lactic acid bacteria and total yeast. In IOP conference series: Earth and environmental science, 518(1), 012-017. https://doi.org/10.1088/1755-1315/518/1/012017.Search in Google Scholar

Vasiljevic, T., Shah, N. P., & Jelen, P. (2005). Growth characteristics of Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 as affected by different neutralisers. Aust. J. Dairy Technol., 60(1), 3.Search in Google Scholar

Vénica, C. I., Wolf, I. V., Suárez, V. B., Bergamini, C. V., & Perotti, M. C. (2018). Effect of the carbohydrates composition on physicochemical parameters and metabolic activity of starter culture in yogurts. LWT - Food Sci. Technol., 94, 163–171. DOI: 10.1016/j.lwt.2018.04.034.Search in Google Scholar

Wright, C. T., & Klaenhammer, T. R. (1984). Phosphated milk adversely affects growth, cellular morphology, and fermentative ability of Lactobacillus bulgaricus. J. Dairy Sci., 67(1), 44–51. DOI: 10.3168/jds.S0022-0302(84)81264-3.Search in Google Scholar

Wu, Z., Wu, J., Cao, P., Jin, Y., Pan, D., Zeng, X., … Guo, Y. (2017). Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid. J. Dairy Sci., 100(6), 4223–4229. DOI: 10.3168/jds.2017-12640.Search in Google Scholar

Zagorska, J., & Ciprovica, I. (2008). The chemical composition of organic and conventional milk in Latvia. In Proceedings 3rd Baltic Conference on Food Science and Technology Foodbalt-2008, 17-18 April (pp. 10-14), Jelgava, Latvia: Latvia University of Agriculture .Search in Google Scholar

Zagorska, J., & Ciproviča, I. (2005). The comparison of chemical pollution between organic and conventional milk. In Research for rural development: International scientific conference proceedings, 19-22 May 2005 (pp. 196-198). Jelgava, Latvia: Latvia University of Agriculture.Search in Google Scholar

Zhang, L., García-Cano, I., & Jiménez-Flores, R. (2020). Effect of milk phospholipids on the growth and cryotolerance of lactic acid bacteria cultured and stored in acid whey-based media. J. Dairy Sci. Commun. 1(2), 36–40. DOI: 10.3168/jdsc.2020-0007.Search in Google Scholar

eISSN:
2256-0939
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Ökologie, Botanik