This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Gondi V, Tolakanahalli R, Mehta MP, et al. Hippocampal-Sparing Whole-Brain Radiotherapy: A “How-To” Technique Using Helical Tomotherapy and Linear Accelerator–Based Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology*Biology*Physics. 2010;78(4):1244-1252. https://doi.org/10.1016/j.ijrobp.2010.01.039Search in Google Scholar
Marsh JC, Gielda BT, Herskovic AM, Abrams RA. Cognitive Sparing during the Administration of Whole Brain Radiotherapy and Prophylactic Cranial Irradiation: Current Concepts and Approaches. Journal of Oncology. 2010;2010:1-16. https://doi.org/10.1155/2010/198208Search in Google Scholar
Pokhrel D, Sood S, McClinton C, et al. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy. Medical Dosimetry. 2016;41(4):315-322. https://doi.org/10.1016/j.meddos.2016.08.001Search in Google Scholar
Tallet AV, Azria D, Barlesi F, et al. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012;7(1). https://doi.org/10.1186/1748-717x-7-77Search in Google Scholar
Harth S, Abo-Madyan Y, Zheng L, et al. Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiotherapy and Oncology. 2013;109(1):152-158. https://doi.org/10.1016/j.radonc.2013.09.009Search in Google Scholar
Ahmad S, Kendall E, Algan O. Comparison of volumetric modulated arc therapy and intensity modulated radiation therapy for whole brain hippocampal sparing treatment plans based on radiobiological modeling. J Med Phys. 2018;43(1):16. https://doi.org/10.4103/jmp.jmp_85_17Search in Google Scholar
Gondi V, Pugh SL, Tome WA, et al. Preservation of Memory With Conformal Avoidance of the Hippocampal Neural Stem-Cell Compartment During Whole-Brain Radiotherapy for Brain Metastases (RTOG 0933): A Phase II Multi-Institutional Trial. JCO. 2014;32(34):3810-3816. https://doi.org/10.1200/jco.2014.57.2909Search in Google Scholar
Deasy JO. Comments on the use of the Lyman-Kutcher-Burman model to describe tissue response to nonuniform irradiation. International Journal of Radiation Oncology*Biology*Physics. 2000;47(5):1458-1459. https://doi.org/10.1016/s0360-3016(00)00500-9Search in Google Scholar
Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method gerald. International Journal of Radiation Oncology*Biology*Physics. 1989;16(6):1623-1630. https://doi.org/10.1016/0360-3016(89)90972-3Search in Google Scholar
Källman P, Ågren A, Brahme A. Tumour and Normal Tissue Responses to Fractionated Non-uniform Dose Delivery. International Journal of Radiation Biology. 1992;62(2):249-262. https://doi.org/10.1080/09553009214552071Search in Google Scholar
Langendijk JA, Lambin P, De Ruysscher D, Widder J, Bos M, Verheij M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: The model-based approach. Radiotherapy and Oncology. 2013;107(3):267-273. https://doi.org/10.1016/j.radonc.2013.05.007Search in Google Scholar
Gondi V, Hermann BP, Mehta MP, Tomé WA. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors. International Journal of Radiation Oncology*Biology*Physics. 2012;83(4):e487-e493. https://doi.org/10.1016/j.ijrobp.2011.10.021Search in Google Scholar
Hacker VL, Jones C. Detecting feigned impairment with the word list recognition of the Wechsler Memory Scale–3rd edition. Brain Injury. 2009;23(3):243-249. https://doi.org/10.1080/02699050902748315Search in Google Scholar
Kazda T, Jancalek R, Pospisil P, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014;9(1). https://doi.org/10.1186/1748-717x-9-139Search in Google Scholar
Tofilon PJ, Fike JR. The Radioresponse of the Central Nervous System: A Dynamic Process. Radiation Research. 2000;153(4):357-370. https://doi.org/10.1667/0033-7587(2000153[0357:trotcn]2.0.co;2)Search in Google Scholar
Merchant TE, Kiehna EN, Kun LE, et al. Phase II trial of conformal radiation therapy for pediatric patients with craniopharyngioma and correlation of surgical factors and radiation dosimetry with change in cognitive function. Journal of Neurosurgery: Pediatrics. 2006;104(2):94-102. https://doi.org/10.3171/ped.2006.104.2.5Search in Google Scholar
Hsiao KY, Yeh SA, Chang CC, Tsai PC, Wu JM, Gau JS. Cognitive Function Before and After Intensity-Modulated Radiation Therapy in Patients With Nasopharyngeal Carcinoma: A Prospective Study. International Journal of Radiation Oncology*Biology*Physics. 2010;77(3):722-726. https://doi.org/10.1016/j.ijrobp.2009.06.080Search in Google Scholar
Marks LB, Yorke ED, Jackson A, et al. Use of Normal Tissue Complication Probability Models in the Clinic. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S10-S19. https://doi.org/10.1016/j.ijrobp.2009.07.1754Search in Google Scholar
Lawrence YR, Li XA, el Naqa I, et al. Radiation Dose–Volume Effects in the Brain. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S20-S27. https://doi.org/10.1016/j.ijrobp.2009.02.091Search in Google Scholar
Marsh JC, Godbole R, Diaz AZ, Gielda BT, Turian JV. Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: A dosimetric feasibility study. Journal of Medical Imaging and Radiation Oncology. 2011;55(4):442-449. https://doi.org/10.1111/j.1754-9485.2011.02282.xSearch in Google Scholar
Mayo C, Yorke E, Merchant TE. Radiation Associated Brainstem Injury. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S36-S41. https://doi.org/10.1016/j.ijrobp.2009.08.078Search in Google Scholar
Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation Dose–Volume Effects of Optic Nerves and Chiasm. International Journal of Radiation Oncology*Biology*Physics. 2010;76(3):S28-S35. https://doi.org/10.1016/j.ijrobp.2009.07.1753Search in Google Scholar
Acharya MM, Lan ML, Kan VH, et al. Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radical Biology and Medicine. 2010;49(12):1846-1855. https://doi.org/10.1016/j.freeradbiomed.2010.08.021Search in Google Scholar
Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313-1317. https://doi.org/10.1038/3305Search in Google Scholar
Barani IJ, Benedict SH, Lin PS. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies. International Journal of Radiation Oncology*Biology*Physics. 2007;68(2):324-333. https://doi.org/10.1016/j.ijrobp.2007.01.033Search in Google Scholar
Niyazi M, Andratschke N, Bendszus M, et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiotherapy and Oncology. 2023;184:109663. https://doi.org/10.1016/j.radonc.2023.109663Search in Google Scholar