Uneingeschränkter Zugang

Analysis of the frequency and type of CT examinations performed in Poland in 2022


Zitieren

Mettler Jr. FA, Mahesh M, Bhargavan-Chatfield M, Chambers CE, Elee JG, Frush DP, et al. Patient exposure from radiologic and nuclear medicine procedures in the United States: procedure volume and effective dose for the period 2006–2016. Radiology. 2020;17:192256. https://doi.org/10.1148/radiol.2020192256 Search in Google Scholar

European Commission. Medical Radiation Exposure of the European Population. Radiation Protection N° 180. 2015. https://op.europa.eu/en/publication-detail/-/publication/d2c4b535-1d96-4d8c-b715-2d03fc927fc9/language-en Search in Google Scholar

UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation. Uncertainties in risk estimates for radiation-induced cancer. Annex B. 2015, https://www.unscear.org/docs/publications/2012/UNSCEAR_2012_Annex-B.pdf Search in Google Scholar

Osei EK, Darko J. A survey of organ equivalent and effective doses from diagnostic radiology procedures. International Scholarly Research Notices. 2013;204346. https://doi.org/10.5402/2013/204346 Search in Google Scholar

Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254-263. https://doi.org/10.1148/radiol.2481071451 Search in Google Scholar

Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol. 2010;194(4):881-889. https://doi.org/10.2214/AJR.09.3462 Search in Google Scholar

Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248(3):995-1003. https://doi.org/10.1148/radiol.2483071964 Search in Google Scholar

National Research Council. 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press. https://doi.org/10.17226/11340 Search in Google Scholar

Shrimpton PC, Wall BF. The increasing importance of X ray computed tomography as a source of medical exposure. Radiation Protection Dosimetry. 1995;57(1-4):413-415. https://doi.org/10.1093/oxfordjournals.rpd.a082572 Search in Google Scholar

Balonov MI, Shrimpton PC. Effective dose and risks from medical X-ray procedures. Ann ICRP. 2012;41(3-4):129-141. https://doi.org/10.1016/j.icrp.2012.06.002 Search in Google Scholar

Brody AS, Guillerman RP. Don't let radiation scare trump patient care: 10 ways you can harm your patients by fear of radiation-induced cancer from diagnostic imaging. Thorax. 2014;69:782-784. https://doi.org/10.1136/thoraxjnl-2014-205499 Search in Google Scholar

Grant E, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, et al. Solid cancer incidence among the life span study of atomic bomb survivors: 1958-2009. Radiat Res. 2017;187:513-537. https://doi.org/10.1667/RR14492.1 Search in Google Scholar

Cologne J, Kim J, Sugiyama H, French B, Cullings H, Preston D, et al. Effect of heterogeneity in background incidence on inference about the solid-cancer radiation dose response in atomic bomb survivors. Radiat Res. 2019;192(4):388-398. https://doi.org/10.1667/RR15127.1 Search in Google Scholar

Cahoon E, Preston D, Pierce D, Grant E, Brenner A, Mabuchi K, et al. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009. Radiat Res. 2017;187(5):538-548. https://doi.org/10.1667/RR14583.1 Search in Google Scholar

Rehani MM, Melick ER, Alvi RM, Khera RD, Batool-Anwar S, Neilan TG, et al. Patients undergoing recurrent CT exams: assessment of patients with non-malignant diseases, reasons for imaging and imaging appropriateness. Eur Radiol. 2020;30(4):1839-1846. https://doi.org/10.1007/s00330-019-06551-8 Search in Google Scholar

Rehani MM, Hauptmann M. Estimates of the number of patients with high cumulative doses through recurrent CT exams in 35 OECD countries. Phys Med. 2020;76:173-176. https://doi.org/10.1016/j.ejmp.2020.07.014 Search in Google Scholar

Tabari A, Li X, Yang K, Liu B, Gee MS, Westra SJ. Patient-level dose monitoring in computed tomography: tracking cumulative dose from multiple multi-sequence exams with tube current modulation in children. Pediatr Radiol. 2021;51(13):2498-2506. https://doi.org/10.1007/s00247-021-05160-2 Search in Google Scholar

Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251:175-184. https://doi.org/10.1148/radiol.2511081296 Search in Google Scholar

Brambilla M, Vassileva J, Kuchcinska A, Rehani MM. Multi-national data on cumulative radiation exposure of patients from recurrent radiological procedures: call for action. Eur Radiol. 2020;30:2993-2501. https://doi.org/10.1007/s00330-019-06528-7 Search in Google Scholar

Brambilla M, Cannillo B, D'Alessio A, Matheoud R, Agliata MF, Carriero A, Patients undergoing multiphase CT scans and receiving a cumulative effective dose of ≥ 100 mSv in a single episode of care. Eur Radiol. 2021;31(7):4452-4458. https://doi.org/10.1007/s00330-020-07665-0 Search in Google Scholar

Zondervan RL, Hahn PF, Sadow CA, Liu B, Lee SI. Body CT scanning in young adults: examination indications, patient outcomes, and risk of radiation-induced cancer. Radiology. 2013;267(2):460-469. https://doi.org/10.1148/radiol.12121324 Search in Google Scholar

Perisinakis K, Seimenis I, Tzedakis A, Papadakis AE, Damilakis J. Triple-rule-out computed tomography angiography with 256-slice computed tomography scanners: patient-specific assessment of radiation burden and associated cancer risk. Invest Radiol. 2012;47(2):109-115. https://doi.org/10.1097/RLI.0b013e31822d0cf3 Search in Google Scholar

Loose RW, Popp U, Wucherer M, Adamus R. Medizinische Strahlenexposition und ihre Rechtfertigung an einem Grossklinikum: Vergleich von strahlungs- und krankheitsbedingtem Risiko [Medical radiation exposure and justification at a large teaching hospital: comparison of radiation-related and disease-related risks]. Rofo. 2010;182(1):66-70. https://doi.org/10.1055/s-0028-1109616 Search in Google Scholar

Ustawa z dnia 27 sierpnia 2004 r. o świadczeniach opieki zdrowotnej finansowanych ze środków publicznych. Dz.U.2022.0.2561 Search in Google Scholar

Rehani MM, Yang K, Melick ER, et al. Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol. 2020;30:1828-1836. https://doi.org/10.1007/s00330-019-06523-y Search in Google Scholar

Healthcare in households in 2020. Statistics Poland, Social Surveys Department, Statistical Office in Krakow, Centre for Health and Health Care Statistics. ISBN 978-83-66466-78-4. https://stat.gov.pl/obszary-tematyczne/zdrowie/ Search in Google Scholar

Eurostat data: Medical technologies - examinations by medical imaging techniques (CT, MRI and PET) (hlth_co_exam): https://ec.europa.eu/eurostat/web/health/database Search in Google Scholar

Biuletyn Statystyczny Ministerstwa Zdrowia, Centrum Systemów Informatycznych Ochrony Zdrowia, Warszawa 2014 Search in Google Scholar

Biuletyn Statystyczny Ministerstwa Zdrowia 2023, Centrum e-Zdrowie, Warszawa 2023. https://ezdrowie.gov.pl/portal/home/badaniai-dane/biuletyn-statystyczny Search in Google Scholar

eISSN:
1898-0309
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Biomedizinische Technik, Physik, Technische und angewandte Physik, Medizinische Physik