1. bookVolumen 28 (2022): Heft 4 (December 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1898-0309
Erstveröffentlichung
30 Dec 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Development of a standard phantom for diffusion-weighted magnetic resonance imaging quality control studies: A review

Online veröffentlicht: 17 Nov 2022
Volumen & Heft: Volumen 28 (2022) - Heft 4 (December 2022)
Seitenbereich: 169 - 179
Eingereicht: 16 Apr 2022
Akzeptiert: 03 Oct 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1898-0309
Erstveröffentlichung
30 Dec 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Drake-Pérez M, Boto J, Fitsiori A, Lovblad K, Vargas MI. Clinical applications of diffusion weighted imaging in neuroradiology. Insights into Imaging. 2018;9(4):535-47. https://doi.org/10.1007/s13244-018-0624-310.1007/s13244-018-0624-3610897929846907 Search in Google Scholar

2. Laubach HJ, Jakob PM, Loevblad KO, et al. A phantom for diffusion-weighted imaging of acute stroke. Journal of Magnetic Resonance Imaging. 1998;8(6):1349-1354. https://doi.org/10.1002/jmri.188008062710.1002/jmri.18800806279848751 Search in Google Scholar

3. Bammer R. Basic principles of diffusion-weighted imaging. European Journal of Radiology. 2003;45(3):169-84. https://doi.org/10.1016/S0720-048X(02)00303-010.1016/S0720-048X(02)00303-0 Search in Google Scholar

4. Tang L, Zhou XJ. Diffusion MRI of cancer: From low to high b-values. Journal of Magnetic Resonance Imaging. 2019;49(1):23-40. https://doi.org/10.1002/jmri.2629310.1002/jmri.26293629884330311988 Search in Google Scholar

5. Rosenkrantz AB, Padhani AR, Chenevert TL, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. Journal of Magnetic Resonance Imaging. 2015;42(5):1190-202. https://doi.org/10.1002/jmri.2498510.1002/jmri.2498526119267 Search in Google Scholar

6. Granata V, Fusco R, Setola SV, et al. Diffusion kurtosis imaging and conventional diffusion weighted imaging to assess electrochemotherapy response in locally advanced pancreatic cancer. Radiology and Oncology. 2019;53(1):15-24. https://doi.org/10.2478/raon-2019-000410.2478/raon-2019-0004641102730681974 Search in Google Scholar

7. Bennett KM, Schmainda KM, Bennett R, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magnetic Resonance in Medicine. 2003;50(4):727-34. https://doi.org/10.1002/mrm.1058110.1002/mrm.1058114523958 Search in Google Scholar

8. Posnansky OP, Shah NJ. On the problem of diffusivity in heterogeneous biological materials with random structure. Journal of Biological Physics. 2008;34(6):551-567. https://doi.org/10.1007/s10867-008-9119-710.1007/s10867-008-9119-7260326419669513 Search in Google Scholar

9. Cooper RL, Chang DB, Young AC, Martin CJ, Ancker-Johnson B. Restricted diffusion in biophysical systems: experiment. Biophysical Journal. 1974;14(3):161-177. https://doi.org/10.1016/S0006-3495(74)85904-710.1016/S0006-3495(74)85904-713344924823458 Search in Google Scholar

10. Malyarenko DI, Pang Y, Amouzandeh G, Chenevert TL. Numerical DWI phantoms to optimize accuracy and precision of quantitative parametric maps for non-Gaussian diffusion. Proc. SPIE 11313, Medical Imaging 2020: Image Processing, 113130W. 2020. https://doi.org/10.1117/12.254941210.1117/12.2549412 Search in Google Scholar

11. Kato H, Kuroda M, Yoshimura K, et al. Composition of MRI phantom equivalent to human tissues. Medical Physics. 2005;32(10):3199-3208. https://doi.org/10.1118/1.204780710.1118/1.204780716279073 Search in Google Scholar

12. de Souza EM, Costa ET, Castellano G. Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives. Research on Biomedical Engineering. 2017;33(2):156-165. https://doi.org/10.1590/2446-4740.0781610.1590/2446-4740.07816 Search in Google Scholar

13. Kıvrak AS, Paksoy Y, Erol C, et al. Comparison of apparent diffusion coefficient values among different MRI platforms: a multicenter phantom study. Diagn Interv Radiol. 2013;19(6):433-437. https://doi.org/10.5152/dir.2013.1303410.5152/dir.2013.1303424004973 Search in Google Scholar

14. Hubbard PL, Zhou FL, Eichhorn SJ, Parker GJ. Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magnetic Resonance in Medicine. 2015;73(1):299-305. https://doi.org/10.1002/mrm.2510710.1002/mrm.2510724469863 Search in Google Scholar

15. Kalaitzakis G, Boursianis T, Gourzoulidis G, et al. Apparent diffusion coefficient measurements on a novel diffusion weighted MRI phantom utilizing EPI and HASTE sequences. Physica Medica. 2020;73:179-189. https://doi.org/10.1016/j.ejmp.2020.04.02410.1016/j.ejmp.2020.04.02432371141 Search in Google Scholar

16. Groch MW, Urbon JA, Erwin WD, Al-Doohan S. An MRI tissue equivalent lesion phantom using a novel polysaccharide material. Magnetic Resonance Imaging. 1991;9(3):417-421. https://doi.org/10.1016/0730-725X(91)90430-T10.1016/0730-725X(91)90430-T1881261 Search in Google Scholar

17. Mazzara GP, Briggs RW, Wu Z, Steinbach BG. Use of a modified polysaccharide gel in developing a realistic breast phantom for MRI. Magnetic Resonance Imaging. 1996;14(6):639-648. https://doi.org/10.1016/0730-725X(96)00054-910.1016/0730-725X(96)00054-98897368 Search in Google Scholar

18. Vassiliou VS, Heng EL, Gatehouse PD, et al. Magnetic resonance imaging phantoms for quality-control of myocardial T1 and ECV mapping: specific formulation, long-term stability and variation with heart rate and temperature. Journal of Cardiovascular Magnetic Resonance. 2016;18(1):1-12. https://doi.org/10.1186/s12968-016-0275-910.1186/s12968-016-0275-9503446327659737 Search in Google Scholar

19. Lavdas I, Behan KC, Papadaki A, McRobbie DW, Aboagye EO. A phantom for diffusion-weighted MRI (DW-MRI). Journal of Magnetic Resonance Imaging, 2013;38(1):173-179. https://doi.org/10.1002/jmri.2395010.1002/jmri.2395023576443 Search in Google Scholar

20. Captur G, Gatehouse P, Keenan KE, et al. A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance— the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program. Journal of Cardiovascular Magnetic Resonance. 2016;18(1):1-20. https://doi.org/10.1186/s12968-016-0280-z10.1186/s12968-016-0280-z503441127660042 Search in Google Scholar

21. Kim JH, Kim JH, Lee SH., Park J, Lee SK. Fabrication of a spherical inclusion phantom for validation of magnetic resonance-based magnetic susceptibility imaging. PLOS One. 2019;14(8):e0220639. https://doi.org/10.1371/journal.pone.022063910.1371/journal.pone.0220639668193831381587 Search in Google Scholar

22. Hara M, Kuroda M, Ohmura Y, et al. A new phantom and empirical formula for apparent diffusion coefficient measurement by a 3 Tesla magnetic resonance imaging scanner. Oncology Letters. 2014;8(2):819-824. https://doi.org/10.3892/ol.2014.218710.3892/ol.2014.2187408137325013504 Search in Google Scholar

23. Gatidis S, Schmidt H, Martirosian P, Schwenzer NF. Development of an MRI phantom for diffusion-weighted imaging with independent adjustment of apparent diffusion coefficient values and T2 relaxation times. Magnetic Resonance in Medicine. 2014;72(2):459-463. https://doi.org/10.1002/mrm.2494410.1002/mrm.2494424123316 Search in Google Scholar

24. Le Bihan D, Iima M. Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLOS Biology. 2015;13(7):e1002203. https://doi.org/10.1371/journal.pbio.100224610.1371/journal.pbio.1002246455945026334873 Search in Google Scholar

25. Khasawneh A, Kuroda M, Yoshimura Y, et al. Development of a novel phantom using polyethylene glycol for the visualization of restricted diffusion in diffusion kurtosis imaging and apparent diffusion coefficient subtraction method. Biomedical Reports. 2020;13:52. https://doi.org/10.3892/br.2020.135910.3892/br.2020.1359755751633082949 Search in Google Scholar

26. Hariri A, Palma-Chavez J, Wear KA, Pfefer TJ, Jokerst JV, Vogt WC. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems. Photoacoustics. 2021;22:100245. https://doi.org/10.1016/j.pacs.2021.10024510.1016/j.pacs.2021.100245797296633747787 Search in Google Scholar

27. Stringer R. Electrophoresis overview. Encyclopedia of Analytical Science (Second Edition), Elsevier 2005, Pages 356-363, https://doi.org/10.1016/B0-12-369397-7/00120-510.1016/B0-12-369397-7/00120-5 Search in Google Scholar

28. Fieremans E, Lee HH. Physical and numerical phantoms for the validation of brain microstructural MRI: A cookbook. Neuroimage. 2018;182:39-61. https://doi.org/10.1016/j.neuroimage.2018.06.04610.1016/j.neuroimage.2018.06.046617567429920376 Search in Google Scholar

29. Yoshida T, Urikura A, Shirata K, Nakaya Y, Terashima S, Hosokawa Y. Image quality assessment of single-shot turbo spin echo diffusion-weighted imaging with parallel imaging technique: a phantom study. The British Journal of Radiology. 2016;89(1065):20160512. https://doi.org/10.1259/bjr.2016051210.1259/bjr.20160512512493527452269 Search in Google Scholar

30. Komlosh ME, Benjamini D, Barnett AS, et al. Anisotropic phantom to calibrate high-q diffusion MRI methods. Journal of Magnetic Resonance. 2017;275:19-28. https://doi.org/10.1016/j.jmr.2016.11.01710.1016/j.jmr.2016.11.017532568027951427 Search in Google Scholar

31. Kamphuis ME, Greuter MJ, Slart RH, Slump CH. Quantitative imaging: systematic review of perfusion/flow phantoms. European Radiology Experimental. 2020;4(1):1-13. https://doi.org/10.1186/s41747-019-0133-210.1186/s41747-019-0133-2705449332128653 Search in Google Scholar

32. Al-Mulla M, McGee A, Kenny P, Rainford L. Quality Assurance Phantom Testing of an Echo-Planar Diffusion-Weighted Sequence on a 3T Scanner. Adv Res Foot Ankle: ARFA-110. 2019;11. Search in Google Scholar

33. Shurche S, Riahialam N. Diffusion Phantom Assessment in 3 Tesla MRI Scanner. Frontiers in Biomedical Technologies. 2016;3(1-2):34-40. Search in Google Scholar

34. Hellerbach A, Schuster V, Jansen A, Sommer J. MRI phantoms–are there alternatives to agar? PloS One. 2013;8(8):e70343. https://doi.org/10.1371/journal.pone.007034310.1371/journal.pone.0070343373401223940563 Search in Google Scholar

35. Sato E, Fukuzawa K, Takashima H, et al. Evaluation of a Polyethylene Glycol Phantom for Measuring Apparent Diffusion Coefficients Using Three 3.0 T MRI Systems. Applied Magnetic Resonance. 2021;52(5):619-31. https://doi.org/10.1007/s00723-021-01336-z10.1007/s00723-021-01336-z Search in Google Scholar

36. Matsuya R, Kuroda M, Matsumoto Y, et al. A new phantom using polyethylene glycol as an apparent diffusion coefficient standard for MR imaging. International Journal of Oncology. 2009;35(4):893-900. https://doi.org/10.3892/ijo_0000040410.3892/ijo_0000040419724927 Search in Google Scholar

37. Boursianis T, Kalaitzakis G, Pappas E, Karantanas AH, Maris TG. MRI diffusion phantoms: ADC and relaxometric measurement comparisons between polyacrylamide and agarose gels. European Journal of Radiology. 2021;139:109696. https://doi.org/10.1016/j.ejrad.2021.10969610.1016/j.ejrad.2021.10969633865063 Search in Google Scholar

38. Wagner F, Laun FB, Kuder TA, et al. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms. PloS One. 2017;12(6):e0179276. https://doi.org/10.1371/journal.pone.017927610.1371/journal.pone.0179276547626128628638 Search in Google Scholar

39. Pierpaoli C, Sarlls J, Nevo U, Basser PJ, Horkay F. Polyvinylpyrrolidone (PVP) water solutions as isotropic phantoms for diffusion MRI studies. Proc Intl Soc Magn Reson Med. 2009;17:1414. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo