Uneingeschränkter Zugang

Application of therapeutic linear accelerators for the production of radioisotopes used in nuclear medicine


Zitieren

1. Preliminary Report on Supply of Radioisotopes for Medical use and Current Developments in Nuclear Medicine. European Commission; 2009. Search in Google Scholar

2. The Applications of Research Reactors, IAEA-TECDOC-1234. International Atomic Energy Agency; 2001. Search in Google Scholar

3. Ross C, Galea R, Saull P, et al. Using the 100Mo photoneutron reaction to meet Canada’s requirement for 99mTc. Phys Can. 2010;66(1):19-24. https://nrc-publications.canada.ca/eng/view/ft/?id=e3d07404-c73f-4b7a-8f49-029b1c2c15a3 Search in Google Scholar

4. Nagai Y. Production scheme for diagnostic-therapeutic radioisotopes by accelerator neutrons. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97(6):292-323. https://doi.org/10.2183/pjab.97.017 Search in Google Scholar

5. Gagnon K, Bénard F, Kovacs M, et al. Cyclotron production of 99mTc: Experimental measurement of the 100Mo(p,x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nuclear Medicine and Biology. 2011;38(6):907-916. https://doi.org/10.1016/j.nucmedbio.2011.02.010 Search in Google Scholar

6. Schaffer P, Bénard F, Bernstein A, et al. Direct production of 99mTc via 100Mo(p,2n) on small medical cyclotrons. Physics Procedia. 2015;66:383-395. https://doi.org/10.1016/j.phpro.2015.05.048 Search in Google Scholar

7. Gagnon K, Wilson JS, Holt CMB, et al. Cyclotron production of 99mTc: recycling of enriched 100Mo metal targets. Appl Radiat Isot. 2012;70(8):1685-1690. https://doi.org/10.1016/j.apradiso.2012.04.016 Search in Google Scholar

8. Waltar A. Radiation and Modern Life: Fulfilling Marie Curie’s Dream. Prometheus Books; 2005. Search in Google Scholar

9. Lambrecht RM, Sekine T, Vera Ruiz H. Alice predictions on the accelerator production of molybdenum-99. Appl Radiat Isot. 1999;51:177-182. https://doi.org/10.1016/S0969-8043(98)00171-7 Search in Google Scholar

10. Ruth T. Accelerating production of medical isotopes. Nature 2009;4 57: 536-537. https://doi.org/10.1038/457536a Search in Google Scholar

11. Gellie RW, Lokan KH. The photodisintegration of molybdenum. Nucl Phys. 1964;60(2):343-348. https://doi.org/10.1016/0029-5582(64)90668-6 Search in Google Scholar

12. Beaver IE, Hupf HB. Production of 99mTc on a Medical Cyclotron: A Feasibility Study. J Nucl Med. 1971;12:739-41. https://doi.org/10.2967/jnumed.113.13341324722529 Search in Google Scholar

13. Artun O, Aytekin H. Investigation of excitation functions of proton-induced reactions on 94, 96, 98, 100Mo targets for production of radioisotopes 94m, 94g, 96m, 96g, 96, 99mTc. Turkish Journal of Physics. 2017;41:295-302. https://doi.org/10.3906/fiz-1612-2 Search in Google Scholar

14. Radioisotopes and Radiopharmaceuticals Reports No. 2, Cyclotron Produced Radionuclides. International Atomic Energy Agency; 2017. Search in Google Scholar

15. Gopalakrishna A, Suryanarayana SV, Naik H, et al. Production of 99Mo and 64Cu in a mixed field of photons and neutrons in a clinical electron linear accelerator. Journal of Radioanalytical and Nuclear Chemistry. 2018;317:1409-1417. https://doi.org/10.1007/s10967-018-6016-9 Search in Google Scholar

16. Starovoitova VN, Tchelidze L, Wells DP. Production of medical radioisotopes with linear accelerators. Appl Radiat Isot. 2014;85:39-44. https://doi.org/10.1016/j.apradiso.2013.11.122 Search in Google Scholar

17. Mevex Linear Accelerators (Linacs). https://mevex.com/mevex-ebeam-xray-linacs/ Search in Google Scholar

18. Galea R, Ross C, Wells RG. Reduce, reuse and recycle: A green solution to Canada’s medical isotope shortage. Appl Radiat Isot. 2014;87:148-51. https://doi.org/10.1016/j.apradiso.2013.11.100 Search in Google Scholar

19. Fong A, Meyer TI, Zala K. Making Medical Isotopes, Report of the Task Force on Alternatives for Medical isotope Production. Vancouver, Canada: TRIUMF; 2008. https://www.triumf.ca/sites/default/files/Making-Medical-Isotopes-PREPUB.pdf Search in Google Scholar

20. Lagunas-Solar MC, Kiefer PM, Carvacho OF, et al. Cyclotron production of NCA Tc-99m and Mo-99 -an alternative non-reactor supply source of instant Tc-99m and Mo-99/Tc-99m generators. Appl Radiat Isot. 1991;42:643-57.10.1016/0883-2889(91)90035-Y Search in Google Scholar

21. Bzymek E, Konefał A, Orlef A, et al. Test of production of 99Mo/99mTc by means of typical medical linear accelerators used in teleradiotherapy. Acta Phys Pol B. 2016;47(3):777-782. https://doi.org/10.5506/APhysPolB.47.777 Search in Google Scholar

22. Bzymek E, Konefał A, Orlef A, et al. Test of production of 198Au radioisotope by means of typical medical linear accelerators used in teleradiotherapy. Acta Phys Pol B. 2017;48(3):671-674. https://doi.org/10.5506/APhysPolB.48.671 Search in Google Scholar

23. Młyńczyk N, Konefał A, Orlef A, et al. Innovatory production of radioisotopes 117mSn, 186Re and 188Re for laboratory tests and the future application in nuclear medicine. Acta Phys Pol B. 2020;51(3):867-872. https://doi.org/10.5506/APhysPolB.51.867 Search in Google Scholar

24. Konefał A, Polaczek-Grelik K, Zipper W. Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs. Radiat Prot Dosim. 2008;128(2):133-145. https://doi.org/10.1093/rpd/ncm31817569692 Search in Google Scholar

25. Konefał A, Orlef A, Łaciak M, et al. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers. Rep Pract Oncol Radiother. 2012;17(6):339-346. https://doi.org/10.1016/j.rpor.2012.06.004392034924669311 Search in Google Scholar

26. Polaczek-Grelik K, Karaczyn B, Konefał A. Nuclear reactions in linear medical accelerators and their exposure consequences. Appl Radiat Isot. 2012;70(10):2332-2339. https://doi.org/10.1016/j.apradiso.2012.06.02122871435 Search in Google Scholar

27. Janiszewska M, Polaczek-Grelik K, Raczkowski M, et al. Secondary radiation dose during high-energy total body irradiation. Strahlenther Onkol. 2014;190(5):459-466. https://doi.org/10.1007/s00066-014-0635-z24599345 Search in Google Scholar

28. Konefał A, Orlef A, Bieniasiewicz M. Measurements of neutron radiation and induced radioactivity for the new medical linear accelerator, the Varian TrueBeam. Radiat Meas. 2016;86:8-15. http://dx.doi.org/10.1016/j.radmeas.2015.12.03910.1016/j.radmeas.2015.12.039 Search in Google Scholar

29. Bieniasiewicz M, Konefał A, Wendykier J, et al. Measurements of thermal and resonance neutron fluence and induced radioactivity inside bunkers of medical linear accelerators in the center of oncology in Opole, Poland. Acta Phys Pol B. 2016;47(3):771-776. https://doi.org/10.5506/APhysPolB.47.771 Search in Google Scholar

30. Konefał A, Bieniasiewicz M, Wendykier J, et al. Additional radiation sources in a treatment and control room of medical linear accelerators. Radiation Physics and Chemistry. 2021;185:109513. https://doi.org/10.1016/j.radphyschem.2021.109513 Search in Google Scholar

31. Sohrabi M, Hakimi A. Novel air-to-tissue conversion factors for fast, epithermal and thermal photoneutrons in a Siemens ONCOR dual energy 18 MV X-ray medical linear accelerator. Radiat Meas. 2019;126:106138. https://doi.org/10.1016/j.radmeas.2019.106138 Search in Google Scholar

32. Nooshin Banaee, Kiarash Goodarzi, Hassan Ali Nedaie, Neutron contamination in radiotherapy processes: a review study. J Rad Res. 2021;62(6):947-954; https://doi.org/10.1093/jrr/rrab07634467374 Search in Google Scholar

33. Konefał A, Dybek M, Zipper W, et al. Thermal and epithermal neutrons in the vicinity of the Primus Siemens biomedical accelerator. Nukleonika 2005;50(2):73-81. Search in Google Scholar

34. Konefał A, Orlef A, Dybek M, et al. Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac. Phys Med. 2008;24(4):212-218. https://doi.org/10.1016/j.ejmp.2008.01.01418339569 Search in Google Scholar

35. Vysakh R, Musthafa MM, Midhun CV, et al. Experimental determination of thermal neutron fluence around Elekta Versa HD linear accelerator for various photon energies. Biomed Phys Eng Express. 2020;6(5):055018. https://doi.org/10.1088/2057-1976/abac9033444249 Search in Google Scholar

36. Esposito A, Bedogni R, Lembo L, et al. Determination of the neutron spectra around an 18 MV medical LINAC with a passive Bonner sphere spectrometer based on gold foils and TLD pairs. Radiat Meas. 2008;43(2-6):1038-1043. https://doi.org/10.1016/j.radmeas.2007.10.035 Search in Google Scholar

37. Vega-Carrillo HR, Baltazar-Raigosa A. Photoneutron spectra around an 18 MV linac. J Radioanal Nucl Chem. 2011;287(1): 323-327. https://doi.org/10.1007/s.10967-010-0696-0 Search in Google Scholar

38. Amgarou K, Lacoste V, Martin A. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Nucl Instr Meth Phys Res A. 2011;629(1):329-336. https://doi.org/10.1016/j.nima.2010.11.101 Search in Google Scholar

39. Konefał A, Bakoniak M. Orlef A, et al. Energy spectra in water for the 6 MV X-ray therapeutic beam generated by Clinac-2300 linac. Radiat Meas. 2015;72:12-22. https://doi.org/10.1016/j.radmeas.2014.11.008 Search in Google Scholar

40. Dietrich SS, Bermab BL. Atlas of photoneutron cross sections obtained with monoenergetic photons. Atomic Data and Nuclear Data Tables. 1998;38(2):199-338. https://doi.org/10.1016/0092-640X(88)90033-2 Search in Google Scholar

41. Beckurc K, Wirtc K. Neutron physics. Atomizdat; 1968. Search in Google Scholar

42. Ditrói F, Tárkányi F, Takács S. et al. Activation cross sections of proton induced nuclear reactions on gold up to 65 MeV. Appl Radiat Isot. 2016;113:96-109. https://doi.org/10.1016/j.apradiso.2016.04.02027156194 Search in Google Scholar

43. Jovancevic N, Daraban L, Stroh H, et al. The neutron cross-section functions for the reactions 187Re(n,α)184Ta, 187Re(n,2n)186Re and 185Re(n,2n)184Re in the energy range 13.08-19.5 MeV. Eur Phys J A. 2016;52:148. https://doi.org/10.1140/epja/i2016-16148-4 Search in Google Scholar

44. Manual for reactor produced radioisotopes. IAEA-TECDOC-1340. International Atomic Energy Agency; 2003. Search in Google Scholar

45. Carlson BV, Guimaraes FB, Caldeira AD. Production Cross Sections of Some Radionuclides with Therapeutic Applications. AIP Conf Proc. 2005;769(1):1676. https://doi.org/10.1063/1.1945331 Search in Google Scholar

46. Ćwikła JB, Żbikowski P, Kwiatkowska B, et al. Radiosynovectomy in rheumatic diseases. J Ultrason. 2014;14:241–251. https://doi.org/10.15557/JoU.2014.0024457967926673861 Search in Google Scholar

47. Młyńczyk N, Konefał A. 117mSn - the promising radioisotope for use in nuclear medicine. Acta Phys Pol B Proc Suppl. 2020;13(4):943-948. https://doi.org/10.5506/APhysPolBSupp.13.943 Search in Google Scholar

48. Ponsard B, Srivastava SC, Mausner LF, et al. Production of Sn-117m in the BR2 high-flux reactor. Appl Radiat Isot. 2009;67(7-8):1158-1161. https://doi.org/10.1016/j.apradiso.2009.02.02319303313 Search in Google Scholar

49. Shearer DR, Pezzullo JC, Moore MM. et al. Radiation dose from radiopharmaceuticals contaminated with molybdenum-99. J Nucl Med. 1988; 29(5): 695-700. Search in Google Scholar

50. Dantas BM, Dantas ALA, Marques FLN, et al. Determination of 99Mo contamination in a nuclear medicine patient submitted to a diagnostic procedure with 99mTc. Braz Arch Biol Tech. 2005; 48: 215-220. https://doi.org/10.1590/S1516-89132005000700032 Search in Google Scholar

51. Argyrou M, Valassi A, Andreou M, et al. Dosimetry and Therapeutic Ratios for Rhenium-186 HEDP. ISRN Molecular Imaging. 2013;124603. https://doi.org/10.1155/2013/124603 Search in Google Scholar

52. Boschi A, Uccelli L, Pasquali M, et al. 188W/188Re Generator System and Its Therapeutic Applications. Journal of Chemistry. 2014;529406. https://doi.org/10.1155/2014/529406 Search in Google Scholar

eISSN:
1898-0309
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Biomedizinische Technik, Physik, Technische und angewandte Physik, Medizinische Physik